DOI QR코드

DOI QR Code

Ecophysiology of the kleptoplastidic dinoflagellate Shimiella gracilenta: II. Effects of temperature and global warming

  • Ok, Jin Hee (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Jeong, Hae Jin (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Kang, Hee Chang (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Park, Sang Ah (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Eom, Se Hee (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • You, Ji Hyun (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Lee, Sung Yeon (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University)
  • Received : 2022.01.10
  • Accepted : 2022.03.02
  • Published : 2022.03.15

Abstract

Water temperature affects plankton survival and growth. The dinoflagellate Shimiella gracilenta survives using the plastids of ingested prey, indicating kleptoplastidy. However, studies on the effects of water temperature on kleptoplastidic dinoflagellates are lacking. We explored the growth and ingestion rates of S. gracilenta as a function of water temperature. Furthermore, using data on its spatiotemporal distribution in Korean coastal waters during 2015-2018, we predicted its distribution under elevated temperature conditions of +2, +4, and +6℃. Growth rates of S. gracilenta with and without Teleaulax amphioxeia prey as well as ingestion rates were significantly affected by water temperature. Growth rates of S. gracilenta with and without prey were positive or zero at 5-25℃ but were negative at ≥30℃. The maximum growth rate of S. gracilenta with T. amphioxeia was 0.85 d-1, achieved at 25℃, and 0.21 d-1 at 20℃ without prey. The ingestion rate of S. gracilenta on T. amphioxeia at 25℃ (0.05 ng C predator-1 d-1) was greater than that at 20℃ (0.04 ng C predator-1 d-1). Thus, feeding may shift the optimal temperature for the maximum growth rate of S. gracilenta from 20 to 25℃. In spring and winter, the distributions of S. gracilenta under elevated temperature conditions were predicted not to differ from those during 2015-2018. However, S. gracilenta was predicted not to survive at some additional stations under elevated temperature conditions of +2, +4, and +6℃ in summer or under elevated temperature conditions of +6℃ in autumn. Therefore, global warming may affect the distribution of S. gracilenta.

Keywords

Acknowledgement

This research was supported by the National Research Foundation funded by the Ministry of Science and ICT (NRF-2020M3F6A1110582; NRF-2021M3I6A1091272; NRF-2021R1A2C1093379) award to HJJ.

References

  1. Anderson, D. M. & Rengefors, K. 2006. Community assembly and seasonal succession of marine dinoflagellates in a temperate estuary: the importance of life cycle events. Limnol. Oceanogr. 51:860-873. https://doi.org/10.4319/lo.2006.51.2.0860
  2. Beitinger, T. L. & Fitzpatrick, L. C. 1979. Physiological and ecological correlates of preferred temperature in fish. Am. Zool. 19:319-329. https://doi.org/10.1093/icb/19.1.319
  3. Benedetti, F., Vogt, M., Elizondo, U. H., Righetti, D., Zimmermann, N. E. & Gruber, N. 2021. Major restructuring of marine plankton assemblages under global warming. Nat. Commun. 12:5226. https://doi.org/10.1038/s41467-021-25385-x
  4. Coats, D. W. 1999. Parasitic life styles of marine dinoflagellates. J. Eukaryot. Microbiol. 46:402-409. https://doi.org/10.1111/j.1550-7408.1999.tb04620.x
  5. Eom, S. H., Jeong, H. J., Ok, J. H., Park, S. A., Kang, H. C., You, J. H., Lee, S. Y., Yoo, Y. D., Lim, A. S. & Lee, M. J. 2021. Interactions between common heterotrophic protists and the dinoflagellate Tripos furca: implication on the long duration of its red tides in the South Sea of Korea in 2020. Algae 36:25-36. https://doi.org/10.4490/algae.2021.36.2.22
  6. Freeman, L. A., Kleypas, J. A. & Miller, A. J. 2013. Coral reef habitat response to climate change scenarios. PLoS ONE 8:e82404. https://doi.org/10.1371/journal.pone.0082404
  7. Frolicher, T. L., Ramseyer, L., Raible, C. C., Rodgers, K. B. & Dunne, J. 2020. Potential predictability of marine ecosystem drivers. Biogeosciences 17:2061-2083. https://doi.org/10.5194/bg-17-2061-2020
  8. Frost, B. W. 1972. Effects of size and concentration of food particles on the feeding behavior of the marine planktonic copepod Calanus pacificus. Limnol. Oceanogr. 17:805-815. https://doi.org/10.4319/lo.1972.17.6.0805
  9. Gast, R. J., Moran, D. M., Beaudoin, D. J., Blythe, J. N., Dennett, M. R. & Caron, D. A. 2006. Abundance of a novel dinoflagellate phylotype in the Ross Sea, Antarctica. J. Phycol. 42:233-242. https://doi.org/10.1111/j.1529-8817.2006.00183.x
  10. Gillooly, J. F. 2000. Effect of body size and temperature on generation time in zooplankton. J. Plankton Res. 22:241-251. https://doi.org/10.1093/plankt/22.2.241
  11. Heinbokel, J. F. 1978. Studies on the functional role of tintinnids in the Southern California Bight. I. Grazing and growth rates in laboratory cultures. Mar. Biol. 47:177-189. https://doi.org/10.1007/BF00395638
  12. Hiscock, K., Southward, A., Tittley, I. & Hawkins, S. 2004. Effects of changing temperature on benthic marine life in Britain and Ireland. Aquat. Conserv. Mar. Freshw. Ecosyst. 14:333-362. https://doi.org/10.1002/aqc.628
  13. Huertas, I. E., Rouco, M., Lopez-Rodas, V. & Costas, E. 2011. Warming will affect phytoplankton differently: evidence through a mechanistic approach. Proc. R. Soc. B Biol. Sci. 278:3534-3543. https://doi.org/10.1098/rspb.2011.0160
  14. Intergovernmental Panel on Climate Change. 2021. Summary for policymakers. In Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Pean, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekci, O., Yu, R. & Zhou, B. (Eds.) Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 42 pp.
  15. Jakobsen, H. H., Hansen, P. J. & Larsen, J. 2000. Growth and grazing responses of two chloroplast-retaining dinoflagellates: effect of irradiance and prey species. Mar. Ecol. Prog. Ser. 201:121-128. https://doi.org/10.3354/meps201121
  16. Jang, S. H. & Jeong, H. J. 2020. Spatio-temporal distributions of the newly described mixotrophic dinoflagellate Yihiella yeosuensis (Suessiaceae) in Korean coastal waters and its grazing impact on prey populations. Algae 35:45-59. https://doi.org/10.4490/algae.2020.35.2.24
  17. Jeong, H. J. 1999. The ecological roles of heterotrophic dinoflagellates in marine planktonic community. J. Eukaryot. Microbiol. 46:390-396. https://doi.org/10.1111/j.1550-7408.1999.tb04618.x
  18. Jeong, H. J., Kang, H. C., Lim, A. S., Jang, S. H., Lee, K., Lee, S. Y., Ok, J. H., You, J. H., Kim, J. H., Lee, K. H., Park, S. A., Eom, S. H., Yoo, Y. D. & Kim, K. Y. 2021. Feeding diverse prey as an excellent strategy of mixotrophic dinoflagellates for global dominance. Sci. Adv. 7:eabe4214. https://doi.org/10.1126/sciadv.abe4214
  19. Jeong, H. J., Lee, K. H., Yoo, Y. D., Kang, N. S., Song, J. Y., Kim, T. H., Seong, K. A., Kim, J. S. & Potvin, E. 2018. Effects of light intensity, temperature, and salinity on the growth and ingestion rates of the red-tide mixotrophic dinoflagellate Paragymnodinium shiwhaense. Harmful Algae 80:46-54. https://doi.org/10.1016/j.hal.2018.09.005
  20. Jeong, H. J., Lim, A. S., Franks, P. J. S., Lee, K. H., Kim, J. H., Kang, N. S., Lee, M. J., Jang, S. H., Lee, S. Y., Yoon, E. Y., Park, J. Y., Yoo, Y. D., Seong, K. A., Kwon, J. E. & Jang, T. Y. 2015. A hierarchy of conceptual models of red-tide generation: nutrition, behavior, and biological interactions. Harmful Algae 47:97-115. https://doi.org/10.1016/j.hal.2015.06.004
  21. Jeong, H. J., Yoo, Y. D., Kim, J. S., Seong, K. A., Kang, N. S. & Kim, T. H. 2010. Growth, feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Sci. J. 45:65-91. https://doi.org/10.1007/s12601-010-0007-2
  22. Jeong, H. J., Yoo, Y. D., Lee, K. H., Kim, T. H., Seong, K. A., Kang, N. S., Lee, S. Y., Kim, J. S., Kim, S. & Yih, W. H. 2013. Red tides in Masan Bay, Korea in 2004-2005: I. Daily variations in the abundance of red-tide organisms and environmental factors. Harmful Algae 30(Suppl. 1):S75-S88. https://doi.org/10.1016/j.hal.2013.10.008
  23. Jeong, H. J., Yoo, Y. D., Seong, K. A., Kim, J. H., Park, J. Y., Kim, S., Lee, S. H., Ha, J. H. & Yih, W. H. 2005. Feeding by the mixotrophic red-tide dinoflagellate Gonyaulax polygramma: mechanisms, prey species, effects of prey concentration, and grazing impact. Aquat. Microb. Ecol. 38:249-257. https://doi.org/10.3354/ame038249
  24. Jonkers, L., Hillebrand, H. & Kucera, M. 2019. Global change drives modern plankton communities away from the pre-industrial state. Nature 570:372-375. https://doi.org/10.1038/s41586-019-1230-3
  25. Jueterbock, A., Tyberghein, L., Verbruggen, H., Coyer, J. A., Olsen, J. L. & Hoarau, G. 2013. Climate change impact on seaweed meadow distribution in the North Atlantic rocky intertidal. Ecol. Evol. 3:1356-1373. https://doi.org/10.1002/ece3.541
  26. Jung, S. 2008. Spatial variability in long-term changes of climate and oceanographic conditions in Korea. J. Environ. Biol. 29:519-529.
  27. Kang, H. C., Jeong, H. J., Lim, A. S., Ok, J. H., You, J. H., Park, S. A., Lee, S. Y. & Eom, S. H. 2020. Effects of temperature on the growth and ingestion rates of the newly described mixotrophic dinoflagellate Yihiella yeosuensis and its two optimal prey species. Algae 35:263-275. https://doi.org/10.4490/algae.2020.35.8.20
  28. Kang, H. C., Jeong, H. J., Park, S. A., Ok, J. H., You, J. H., Eom, S. H., Park, E. C., Jang, S. H. & Lee, S. Y. 2021. Comparative transcriptome analysis of the phototrophic dinoflagellate Biecheleriopsis adriatica grown under optimal temperature and cold and heat stress. Front. Mar. Sci. 8:761095. https://doi.org/10.3389/fmars.2021.761095
  29. Kibler, S. R., Tester, P. A., Kunkel, K. E., Moore, S. K. & Litaker, R. W. 2015. Effects of ocean warming on growth and distribution of dinoflagellates associated with ciguatera fish poisoning in the Caribbean. Ecol. Model. 316:194-210. https://doi.org/10.1016/j.ecolmodel.2015.08.020
  30. Kim, B. -T., Lee, J. -S. & Seo, Y. -S. 2016. An analysis on the climate change exposure of fisheries and fish species in the southern sea under the RCP scenarios: focused on sea temperature variation. J. Fish. Bus. Adm. 47:31-44.
  31. Kim, J. S., Jeong, H. J., Yoo, Y. D., Kang, N. S., Kim, S. K., Song, J. Y., Lee, M. J., Kim, S. T., Kang, J. H., Seong, K. A. & Yih, W. H. 2013. Red tides in Masan Bay, Korea, in 2004-2005: III. Daily variations in the abundance of mesozooplankton and their grazing impacts on red-tide organisms. Harmful Algae 30(Suppl. 1):S102-S113. https://doi.org/10.1016/j.hal.2013.10.010
  32. Kudela, R. M. & Gobler, C. J. 2012. Harmful dinoflagellate blooms caused by Cochlodinium sp.: global expansion and ecological strategies facilitating bloom formation. Harmful Algae 14:71-86. https://doi.org/10.1016/j.hal.2011.10.015
  33. Laabir, M., Jauzein, C., Genovesi, B., Masseret, E., Grzebyk, D., Cecchi, P., Vaquer, A., Perrin, Y. & Collos, Y. 2011. Influence of temperature, salinity and irradiance on the growth and cell yield of the harmful red tide dinoflagellate Alexandrium catenella colonizing Mediterranean waters. J. Plankton Res. 33:1550-1563. https://doi.org/10.1093/plankt/fbr050
  34. Langer, M. R., Weinmann, A. E., Lotters, S., Bernhard, J. M. & Rodder, D. 2013. Climate-driven range extension of Amphistegina (Protista, Foraminiferida): models of current and predicted future ranges. PLoS ONE 8:e54443. https://doi.org/10.1371/journal.pone.0054443
  35. Lee, K. H., Jeong, H. J., Lee, K., Franks, P. J. S., Seong, K. A., Lee, S. Y., Lee, M. J., Jang, S. H., Potvin, E., Lim, A. S., Yoon, E. Y., Yoo, Y. D., Kang, N. S. & Kim, K. Y. 2019. Effects of warming and eutrophication on coastal phytoplankton production. Harmful Algae 81:106-118. https://doi.org/10.1016/j.hal.2018.11.017
  36. Lee, M. J., Jeong, H. J., Kim, J. S., Jang, K. K., Kang, N. S., Jang, S. H., Lee, H. B., Lee, S. B., Kim, H. S. & Choi, C. H. 2017. Ichthyotoxic Cochlodinium polykrikoides red tides offshore in the South Sea, Korea in 2014: III. Metazooplankton and their grazing impacts on red-tide organisms and heterotrophic protists. Algae 32:285-308. https://doi.org/10.4490/algae.2017.32.11.28
  37. Lee, S. Y., Jeong, H. J., Ok, J. H., Kang, H. C. & You, J. H. 2020. Spatial-temporal distributions of the newly described mixotrophic dinoflagellate Gymnodinium smaydae in Korean coastal waters. Algae 35:225-236. https://doi.org/10.4490/algae.2020.35.8.25
  38. Lim, A. S. & Jeong, H. J. 2021. Benthic dinoflagellates in Korean waters. Algae 36:91-109. https://doi.org/10.4490/algae.2021.36.5.31
  39. Lim, A. S., Jeong, H. J., Ok, J. H., You, J. H., Kang, H. C. & Kim, S. J. 2019. Effects of light intensity and temperature on growth and ingestion rates of the mixotrophic dinoflagellate Alexandrium pohangense. Mar. Biol. 166:98. https://doi.org/10.1007/s00227-019-3546-9
  40. Lim, A. S., Jeong, H. J., Seong, K. A., Lee, M. J., Kang, N. S., Jang, S. H., Lee, K. H., Park, J. Y., Jang, T. Y. & Yoo, Y. D. 2017. Ichthyotoxic Cochlodinium polykrikoides red tides offshore in the South Sea, Korea in 2014: II. Heterotrophic protists and their grazing impacts on red-tide organisms. Algae 32:199-222. https://doi.org/10.4490/algae.2017.32.8.25
  41. Lim, M. H., Lee, C. H., Min, J., Lee, H. G. & Kim, K. Y. 2020. Effect of elevated pCO2 on thermal performance of Chattonella marina and Chattonella ovata (Raphidophyceae). Algae 35:375-388. https://doi.org/10.4490/algae.2020.35.12.8
  42. Loeng, H. 1989. The influence of temperature on some fish population parameters in the Barents Sea. J. Northw. Atl. Fish. Sci. 9:103-113. https://doi.org/10.2960/J.v9.a9
  43. Montero, P., Perez-Santos, I., Daneri, G., Gutierrez, M. H., Igor, G., Seguel, R., Purdie, D. & Crawford, D. W. 2017. A winter dinoflagellate bloom drives high rates of primary production in a Patagonian fjord ecosystem. Estuar. Coast. Shelf Sci. 199:105-116. https://doi.org/10.1016/j.ecss.2017.09.027
  44. Nielsen, M. V. 1996. Growth and chemical composition of the toxic dinoflagellate Gymnodinium galatheanum in relation to irradiance, temperature and salinity. Mar. Ecol. Prog. Ser. 136:205-211. https://doi.org/10.3354/meps136205
  45. Ok, J. H., Jeong, H. J., Kang, H. C., Park, S. A., Eom, S. H., You, J. H. & Lee, S. Y. 2021a. Ecophysiology of the kleptoplastidic dinoflagellate Shimiella gracilenta: I. spatiotemporal distribution in Korean coastal waters and growth and ingestion rates. Algae 36:263-283. https://doi.org/10.4490/algae.2021.36.11.28
  46. Ok, J. H., Jeong, H. J., Lee, S. Y., Park, S. A. & Noh, J. H. 2021b. Shimiella gen. nov. and Shimiella gracilenta sp. nov. (Dinophyceae, Kareniaceae), a kleptoplastidic dinoflagellate from Korean waters and its survival under starvation. J. Phycol. 57:70-91. https://doi.org/10.1111/jpy.13067
  47. Ok, J. H., Jeong, H. J., Lim, A. S. & Lee, K. H. 2017. Interactions between the mixotrophic dinoflagellate Takayama helix and common heterotrophic protists. Harmful Algae 68:178-191. https://doi.org/10.1016/j.hal.2017.08.006
  48. Ok, J. H., Jeong, H. J., Lim, A. S., Lee, S. Y. & Kim, S. J. 2018. Feeding by the heterotrophic nanoflagellate Katablepharis remigera on algal prey and its nationwide distribution in Korea. Harmful Algae 74:30-45. https://doi.org/10.1016/j.hal.2018.03.011
  49. Ok, J. H., Jeong, H. J., Lim, A. S., You, J. H., Kang, H. C., Kim, S. J. & Lee, S. Y. 2019. Effects of light and temperature on the growth of Takayama helix (Dinophyceae): mixotrophy as a survival strategy against photoinhibition. J. Phycol. 55:1181-1195. https://doi.org/10.1111/jpy.12907
  50. Ok, J. H., Jeong, H. J., You, J. H., Kang, H. C., Park, S. A., Lim, A. S., Lee, S. Y. & Eom, S. H. 2021c. Phytoplankton bloom dynamics in incubated natural seawater: predicting bloom magnitude and timing. Front. Mar. Sci. 8:681252. https://doi.org/10.3389/fmars.2021.681252
  51. Oliver, T. A. & Palumbi, S. R. 2011. Do fluctuating temperature environments elevate coral thermal tolerance? Coral Reefs 30:429-440. https://doi.org/10.1007/s00338-011-0721-y
  52. Park, K. -A., Lee, E. -Y., Chang, E. & Hong, S. 2015. Spatial and temporal variability of sea surface temperature and warming trends in the Yellow Sea. J. Mar. Sys. 143:24-38. https://doi.org/10.1016/j.jmarsys.2014.10.013
  53. Park, K. -A., Park, J. -E., Choi, B. -J., Lee, S. H., Shin, H. R., Lee, S. R., Byun, D. -S., Kang, B. & Lee, E. 2017. Schematic maps of ocean currents in the Yellow Sea and the East China Sea for science textbooks based on scientific knowledge from oceanic measurements. The Sea. 22:151-171. https://doi.org/10.7850/JKSO.2017.22.4.151
  54. Park, S. A., Jeong, H. J., Ok, J. H., Kang, H. C., You, J. H., Eom, S. H. & Park, E. C. 2021. Interactions between the kleptoplastidic dinoflagellate Shimiella gracilenta and several common heterotrophic protists. Front. Mar. Sci. 8:738547. https://doi.org/10.3389/fmars.2021.738547
  55. Perry, A. L., Low, P. J., Ellis, J. R. & Reynolds, J. D. 2005. Climate change and distribution shifts in marine fishes. Science 308:1912-1915. https://doi.org/10.1126/science.1111322
  56. Poloczanska, E. S., Burrows, M. T., Brown, C. J., Garcia Molinos, J., Halpern, B. S., Hoegh-Guldberg, O., Kappel, C. V., Moore, P. J., Richardson, A. J., Schoeman, D. S. & Sydeman, W. J. 2016. Responses of marine organisms to climate change across oceans. Front. Mar. Sci. 3:62.
  57. Skovgaard, A. 1998. Role of chloroplast retention in a marine dinoflagellate. Aquat. Microb. Ecol. 15:293-301. https://doi.org/10.3354/ame015293
  58. Smalley, G. W. & Coats, D. W. 2002. Ecology of the red-tide dinoflagellate Ceratium furca: distribution, mixotrophy, and grazing impact on ciliate populations of Chesapeake Bay. J. Eukaryot. Microbiol. 49:63-73. https://doi.org/10.1111/j.1550-7408.2002.tb00343.x
  59. Smayda, T. J. & Reynolds, C. S. 2003. Strategies of marine dinoflagellate survival and some rules of assembly. J. Sea Res. 49:95-106. https://doi.org/10.1016/S1385-1101(02)00219-8
  60. Stat, M., Morris, E. & Gates, R. D. 2008. Functional diversity in coral-dinoflagellate symbiosis. Proc. Natl. Acad. Sci. U. S. A. 105:9256-9261. https://doi.org/10.1073/pnas.0801328105
  61. Suh, M. -S., Oh, S. -G., Lee, Y. -S., Ahn, J. -B., Cha, D. -H., Lee, D. -K., Hong, S. -Y., Min, S. -K., Park, S. -C. & Kang, H. -S. 2016. Projections of high resolution climate changes for South Korea using multiple-regional climate models based on four RCP scenarios. Part 1: surface air temperature. Asia-Pac. J. Atmos. Sci. 52:151-169. https://doi.org/10.1007/s13143-016-0017-9
  62. Taylor, F. J. R., Hoppenrath, M. & Saldarriaga, J. F. 2008. Dinoflagellate diversity and distribution. Biodivers. Conserv. 17:407-418. https://doi.org/10.1007/s10531-007-9258-3
  63. Thomas, M. K., Kremer, C. T., Klausmeier, C. A. & Litchman, E. 2012. A global pattern of thermal adaptation in marine phytoplankton. Science 338:1085-1088. https://doi.org/10.1126/science.1224836
  64. Thompson, P. A., Guo, M. -X. & Harrison, P. J. 1992. Effects of variation in temperature. I. On the biochemical composition of eight species of marine phytoplankton. J. Phycol. 28:481-488. https://doi.org/10.1111/j.0022-3646.1992.00481.x
  65. Torres, G., Carnicer, O., Canepa, A., De La Fuente, P., Recalde, S., Narea, R., Pinto, E. & Borbor-Cordova, M. J. 2019. Spatio-temporal pattern of dinoflagellates along the tropical eastern Pacific coast (Ecuador). Front. Mar. Sci. 6:145. https://doi.org/10.3389/fmars.2019.00145
  66. Tunin-Ley, A., Ibanez, F., Labat, J. -P., Zingone, A. & Lemee, R. 2009. Phytoplankton biodiversity and NW Mediterranean Sea warming: changes in the dinoflagellate genus Ceratium in the 20th century. Mar. Ecol. Prog. Ser. 375:85-99. https://doi.org/10.3354/meps07730
  67. Witt, M. J., Hawkes, L. A., Godfrey, M. H., Godley, B. J. & Broderick, A. C. 2010. Predicting the impacts of climate change on a globally distributed species: the case of the loggerhead turtle. J. Exp. Biol. 213:901-911. https://doi.org/10.1242/jeb.038133
  68. Yoo, Y. D, Jeong, H. J., Kim, J. S., Kim, T. H., Kim, J. H., Seong, K. A., Lee, S. H., Kang, N. S., Park, J. W., Park, J., Yoon, E. Y. & Yih, W. H. 2013. Red tides in Masan Bay, Korea in 2004-2005: II. Daily variations in the abundance of heterotrophic protists and their grazing impact on red-tide organisms. Harmful Algae 30(Suppl. 1):S89-S101. https://doi.org/10.1016/j.hal.2013.10.009
  69. You, J. H., Jeong, H. J., Kang, H. C., Ok, J. H., Park, S. A. & Lim, A. S. 2020a. Feeding by common heterotrophic protist predators on seven Prorocentrum species. Algae 35:61-78. https://doi.org/10.4490/algae.2020.35.2.28
  70. You, J. H., Jeong, H. J., Lim, A. S., Ok, J. H. & Kang, H. C. 2020b. Effects of irradiance and temperature on the growth and feeding of the obligate mixotrophic dinoflagellate Gymnodinium smaydae. Mar. Biol. 167:64. https://doi.org/10.1007/s00227-020-3678-y
  71. Yvon-Durocher, G., Allen, A. P., Cellamare, M., Dossena, M., Gaston, K. J., Leitao, M., Montoya, J. M., Reuman, D. C., Woodward, G. & Trimmer, M. 2015. Five years of experimental warming increases the biodiversity and productivity of phytoplankton. PLoS Biol. 13:e1002324. https://doi.org/10.1371/journal.pbio.1002324