과제정보
이 연구는 한국해양과학기술원 주요사업인 '해양방위 및 안전기술 개발(PEA0041)'과 산업통상자원부의 '대심도 해양 탐사시추를 통한 대규모 CO2 지중저장소 확보(PN90810)'의 지원을 받아 수행되었습니다.
참고문헌
- Alaudah, Y., Michalowicz, P., Alfarraj, M., and AlRegib, G., 2019, A machine-learning benchmark for facies classification, Interpretation, 7(3), p.SE175-SE187, doi: 10.1190/INT-2018-0249.1.
- Chaki, S., 2015, Reservoir characterization: A machine learning approach, arXiv preprint, arXiv:1506.05070, doi: 10.48550/arXiv.1506.05070.
- Chevitarese, D., Szwarcman, D., Silva, R. M. D., and Brazil, E. V., 2018. Seismic facies segmentation using deep learning, AAPG Ann. Convention and Exhibition, https://www.searchanddiscovery.com/documents/2018/42286chevitarese/ndx_chevitarese.pdf
- Choi, W. C., Lee, G. H., Cho, S. I., Choi, B. H., and Pyun, S. J., 2020, Fault detection for seismic data interpretation based on machine learning: Research trends and technological introduction, Geophys. and Geophys. Explor., 23(2), p.97-114, doi: 10.7582/GGE.2020.23.2.097.
- Choi, W. C., and Pyun, S. J., 2021, Synthetic training data generation for fault detection based on deep learning, Geophys. and Geophys. Explor., 24(3), p.89-97, doi: 10.7582/GGE.2021.24.3.089.
- Csurka, G., Larlus, D., Perronnin, F. and Meylan F., 2013, What is a good evaluation measure for semantic segmentation?, BMVC, 27, p.2013, doi: 10.5244/C.27.32.
- Cunha, A., Pochet, A., Lopes, H., and Gattass, M., 2020, Seismic fault detection in real data using transfer learning from a convolutional neural network pre-trained with synthetic seismic data, Comput. Geosci., 135, p.104344, doi: 10.1016/j.cageo.2019.104344.
- Forman, G., and Scholz, M., 2010. Apples-to-apples in crossvalidation studies: pitfalls in classifier performance measurement, SIGKDD Explor., 12(1), pp.49-57, doi: 10.1145/1882471.1882479.
- Griffith, D. P., Zamanian, S. A., Vila, J., Vial-Aussavy, A., Solum, J., Potter, R. D., and Menapace, F., 2019, Deep learning applied to seismic attribute computation, Interpretation, 7(3), SE141-SE150, doi: 10.1190/INT-2018-0227.1.
- Guillen, P., Larrazabal, G., Gonzalez, G., Boumber, D., and Vilalta, R., 2015, Supervised learning to detect salt body, SEG Technical Program Expanded Abstracts 2015, Soc. Expl. Geophys., p.1826-1829, doi: 10.1190/segam2015-5931401.1.
- Guillon, S., Joncour, F., Goutorbe, P., and Castanie, L., 2019, Reducing training dataset bias for automatic fault detection, 89th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstract, p.2423-2427, doi: 10.1190/segam2019-3216557.1.
- Kao, P., Shailja, S., Jiang, J., Zhang, A., Khan, A., Chen, J. W., and Manjunath, B. S., 2020, Improving Patch-Based Convolutional Neural Networks for MRI Brain Tumor Segmentation by Leveraging Location Information, Frontiers in Neuroscience, 13, p.1449, doi: 10.3389/fnins.2019.01449.
- Keynejad, S., Sbar, M. L., and Jhonson, R. A., 2019, Assessment of machine-learning techniques in predicting lithofluid facies logs in hydrocarbon wells, Interpretation, 7(3), p.SF1-SF13, doi: 10.1190/INT-2018-0115.1.
- Krizhevsky, A., Sutskever, I., and Hinton, G. E., 2012. Imagenet classification with deep convolutional neural networks, Adv. Neural Inf. Process. Syst., p.1097-1105, https://dl.acm.org/doi/10.5555/2999134.2999257.
- Kumar, P. C., and Sain, K., 2018, Attribute amalgamation-aiding interpretation of faults from seismic data: An example from Waitara 3D prospect in Taranaki basin off New Zealand, J. Appl. Geophy., 159, p.52-68, doi: 10.1016/j.jappgeo.2018.07.023.
- Lee, H., Nam, H., Kim, B., Kang, M., and Park, K., 2019, Status of Marine Seismic Exploration Technology, J. Korean Soc. Miner. Energy Resour. Eng., 56(1), pp. 86-106, https://doi.org/10.32390/ksmer.2019.56.1.086
- Li, S., Yang, C., Sun, H., and Zhang, H., 2019, Seismic fault detection using an encoder-decoder convolutional neural network with a small training set, J. Geophys. Eng., 16(1), p.175-189, doi: 10.1093/jge/gxy015.
- Liu, N., He, T., Tian, Y., Wu, B., Gao, J., and Xu, Z., 2020, Common-azimuth seismic data fault analysis using residual UNet, Interpretation, 8(3), SM25-SM37, doi: 10.1190/INT2019-0173.1.
- Mandelli, S., Lipari, V., Bestagini, P., and Tubaro, S., 2019, Interpolation and Denoising of Seismic Data using Convolutional Neural Networks, arXiv preprint, arXiv:1901.07927, doi: 10.48550/arXiv.1901.07927.
- Misra, D., Crispim-Junior, C., and Tougne, L., 2020, Patch-based CNN evaluation for bark classification. ECCV, Springer, Cham., pp.197-212, doi: 10.1007/978-3-030-65414-6_15.
- Moon, H., Jou, H., Lee, S., Kim, H., and Jun, H., 2020, Comparison of Convolutional Neural Networks for Dividing Seismic Sequences, J. The Korean Soc. Miner. Energy Resour. Eng., 57(6), pp.541-553, doi: 10.32390/ksmer.2020.57.6.541.
- Noh, H., Hong, S., and Han, B., 2015. Learning deconvolution network for semantic segmentation, arXiv preprint, arXiv: 1505.04366, doi: 10.48550/arXiv.1505.04366.
- Onajite, E., 2013, Seismic data analysis techniques in hydrocarbon exploration, Elsevier, p256. https://www.bookdepository.com/Seismic-Data-Analysis-Techniques-Hydrocarbon-ExplorationEnwenode-Onajite/9780124200234
- Pochet, A., Diniz, P. H., Lopes, H., and Gattass, M., 2019, Seismic fault detection using convolutional neural networks trained on synthetic poststacked amplitude maps, IEEE Trans. Geosci. Remote. Sens., 16(3), p.352-356, doi: 10.1109/LGRS.2018.2875836.
- Qi, J., Lyu, B., Wu, X., and Marfurt, K., 2020, Comparing convolutional neural networking and image processing seismic fault detection methods, 90th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstract, p.1111-1115, doi: 10.1190/segam2020-3428171.1.
- Qian, F., Yin, M., Liu, X. Y., Wang, Y. J., Lu, C., and Hu, G. M., 2018. Unsupervised seismic facies analysis via deep convolutional autoencoders, Geophysics, 83(3), p.A39-A43, doi: 10.1190/geo2017-0524.1.
- Ronneberger, O., Fischer, P., and Brox, T., 2015, U-net: Convolutional networks for biomedical image segmentation, International Conference on Medical image computing and computer-assisted intervention, Springer, Cham, p.234-241, doi: 10.1007/978-3-319-24574-4_28.
- Sen, S., Kainkaryam, S., Ong, C., and Sharma, A., 2019, Regularization strategies for deep-learning-based salt model building, Interpretation, 7(4), p.T911-T922, doi: 10.1190/INT-2018-0229.1.
- Shi, Y., Wu, X., and Fomel, S., 2019, SaltSeg: Automatic 3D salt segmentation using a deep convolutional neural network, Interpretation, 7(3), p.SE113-SE122, doi: 10.1190/INT-2018-0235.1.
- Simonyan, K., and Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition, arXiv preprint, arXiv:1409.1556, doi: 10.48550/arXiv.1409.1556.
- Smith, R., Mukerji, T., and Lupo, T., 2019, Correlating geologic and seismic data with unconventional resource production curves using machine learning, Geophysics, 84(2), p.O39-O47, doi: 10.1190/geo2018-0202.1.
- Tian, X., and Daigle, H., 2018, Machine-learning-based object detection in images for reservoir characterization: A case study of fracture detection in shales, The Leading Edge, 37(6), p.435-442, doi: 10.1190/tle37060435.1.
- Wrona, T., Pan, I., Gawthorpe, R. L., and Fossen, H., 2018, Seismic facies analysis using machine learning, Geophysics, 83(5), p.O83-O95, doi: 10.1190/geo2017-0595.1.
- Wu, X., Liang, L., Shi, Y., and Fomel, S., 2019, FaultSeg3D: Using synthetic data sets to train an end-to-end convolutional neural network for 3D seismic fault segmentation, Geophysics, 84(3), p.IM35-IM45, doi: 10.1190/geo2018-0646.1.
- Wu, X., Geng, Z., Shi, Y., Pham, N., Fomel, S., and Caumon, G., 2020, Building realistic structure models to train convolutional neural networks for seismic structural interpretation, Geophysics, 85(4), p.WA27-WA39, doi: 10.1190/geo2019-0375.1.
- Xiong, W., Ji, X., Ma, Y., Wang, Y., ALBinHassan, N. M., Ali, M. N., and Luo, Y., 2018, Seismic fault detection with convolutional neural network, Geophysics, 83(5), p.O97-O103, doi: 10.1190/geo2017-0666.1.
- Yuan, C., Cai, M., Lu, F., Li, H., and Li, G., 2020, 3D Fault Detection Based on GCS-Net, 82nd Ann. Internat. Mtg., Eur. Assn. Geosci. Eng., Conference Proceedings, doi: 10.3997/2214-4609.202010699.
- Zhang, C., Frogner, C., Araya-Polo, M., and Hohl, D., 2014, Machine-learning based automated fault detection in seismic traces, 76th EAGE Conference and Exhibition 2014, Eur. Assn. Geosci. Eng., p.1-5, doi: 10.3997/2214-4609.20141500.
- Zhao, T., 2018a. Seismic facies classification using different deep convolutional neural networks, SEG Technical Program Expanded Abstracts 2018, Soc. Expl. Geophys., p.2046-2050, doi: 10.1190/segam2018-2997085.1.
- Zhao, T., Li, F., and Marfurt, K. J., 2018b, Seismic attribute selection for unsupervised seismic facies analysis using user-guided data-adaptive weights, Geophysics, 83(2), p.O31-O44, doi: 10.1190/geo2017-0192.1.