DOI QR코드

DOI QR Code

불포화 지반에서의 산사태 3차원 안정해석에 대한 사례연구

Three-dimensional Stability Analysis of Landslides in Unsaturated Soils: A Case Study

  • 김성진 (영남대학교 건설시스템공학과) ;
  • 오세붕 (영남대학교 건설시스템공학과) ;
  • 유영근 (고려대학교 건축사회환경공학부) ;
  • 신호성 (울산대학교 건설환경공학부)
  • 투고 : 2021.11.11
  • 심사 : 2022.02.23
  • 발행 : 2022.06.01

초록

산사태에 대한 비탈면 안정해석시, 산지 비탈면의 경사와 지형의 변화가 심한 경우에는 엄밀한 해석으로 안정성을 평가해야 한다. 본 연구에서는 불포화층에서 강우로 인한 침투 현상을 해석하여 간극수압의 변동을 고려한 산사태 안정성 분석을 수행하였다. 비탈면 안정해석 시 실제 산사태가 발생한 지역을 선정하여 3차원 비탈면 안정해석을 수행하였고 무한비탈면 해석결과와 비교하였다. 세밀한 지반정보를 기반하여 3차원 비탈면 안정해석으로 지형에 따라 변동하는 산사태의 발생위치와 규모를 예측할 수 있다고 판단되었다.

In slope stability analysis for landslides, mountains have various slopes and geographical features, and hence it is necessary to estimate stability using rigorous analysis methods. In this study, after the analysis of infiltration behavior through unsaturated layers due to rainfall, the stability of landslide was estimated to account for the variation of pore water pressures. In the analysis of slope stability, a three-dimensional slope analysis was compared with an infinite slope analysis in a case study of terrain in which an actual landslide occurred. In the three-dimensional slope stability analysis, it was found that the location of the failure and the failure area were predicted accurately based on the detailed geological information despite the variation of geographical features.

키워드

과제정보

이 연구는 부분적으로 한국연구재단 "불포화층의 수리-역학적 유효응력 거동을 고려한 3차원 산사태 평가 시스템 개발"(과제번호: 2019R1A2C1003604)의 연구비 지원에 의한 성과임. 본 논문은 2021 CONVENTION 논문을 수정·보완하여 작성되었습니다.

참고문헌

  1. Bishop, A. W. (1954). "The use of pore water coefficients in practice." Geotechnique, Vol. 4, No. 4, pp. 148-152. https://doi.org/10.1680/geot.1954.4.4.148
  2. Bishop, A. W. (1959). "The principle of effective stress." Teknisk Ukeblad I Samarbeide Med Teknikk, Oslo, Norway, Vol. 106, No. 39, pp. 859-863.
  3. Esri (2021). Manual for ArcGIS Pro, ESRI Korea.
  4. Fredlund, D. G., Morgenstern, N. R. and Widger, R. A. (1978). "The shear strength of unsaturated soils." Canadian Geotechnical Journal, Vol. 15, No. 3, pp. 313-321. https://doi.org/10.1139/t78-029
  5. GEO-SLOPE (2007). Seepage modelling with SEEP/W 2007, GEOSLOPE International Ltd, Canada.
  6. Hungr, O. (1987). "An extension of Bishop's simplified method of slope stability analysis to three dimensions." Geotechnique, Vol. 37, No. 1, pp. 113-117. https://doi.org/10.1680/geot.1987.37.1.113
  7. Iverson, R. M. (2000). "Landslide triggering by rain infiltration." Water Resources Research, Vol. 36, No. 7, pp. 1897-1910. https://doi.org/10.1029/2000WR900090
  8. Lu, N. and Godt, J. (2008). "Infinite slope stability under steady unsaturated seepage conditions." Water Resources Research, Vol. 44, W11404, DOI: 10.1029/2008WR006976.
  9. Lu, N. and Likos, W. J. (2004). Unsaturated soil mechanics, Willey, New York, USA.
  10. Lu, N. and Likos, W. J. (2006). "Suction stress characteristic curve for unsaturated soils." Journal of Geotechnical and Geoenvironmental Engineering, Vol. 132, No. 2, pp. 131-142. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:2(131)
  11. Mualem, Y. (1976). "A new model for predicting the hydraulic conductivity of unsaturated porous media." Water Resources Research, Vol. 12, No. 3, pp. 513-522. https://doi.org/10.1029/WR012i003p00513
  12. National Geographic Information Institute (2022), Aerial photograph data, Available at: www.ngii.go.kr (Accessed: March 5, 2022) (in Korean).
  13. Oh, S. B., Lu, N., Kim, Y. K., Lee, S. J. and Lee, S. R. (2012). "Relationship between the soil-water characteristic curve and the suction stress characteristic curve: experimental evidence from residual soils." Journal of Geotechnical and Geoenvironmental Engineering, Vol. 138, pp. 47-57. DOI: 10.1061/(ASCE)GT.1943-5606.0000564.
  14. Oh, S. B., Yoo, Y. G., Park, G. S., Kim, S. J. and Lee, G. H. (2021). "The validation of soil water retention tests based on evaporation method and chilled-mirror Method." Proceedings of Korean Geo-Environmental Society, Jeju, pp. 69-70 (in Korean).
  15. Rahardjo, H., Kim, Y. M. and Satyanaga, A. (2019). "Role of unsaturated soil mechanics in geotechnical engineering." International Journal of Geo-Engineering, Vol. 10, No. 1, pp. 1-8. https://doi.org/10.1186/s40703-019-0097-3
  16. Richards, L. A. (1931). "Capillary conduction of liquids through porous mediums." Journal of Applied Physics, Vol. 1, pp. 318-333. DOI: 10.1063/1.1745010.
  17. Schelle, H., Heise, L., Janicke, K. and Durner, W. (2013). "Water retention characteristics of soils over the whole moisture range: a comparison of laboratory methods: water retention characteristics." European Journal of Soil Science, Vol. 64, No. 6, pp. 814-821. https://doi.org/10.1111/ejss.12108
  18. van Genuchten, M. T. (1980). "A closed-form equation of predicting the hydraulic conductivity of unsaturated soils." Soil Science Society of America Journal, Vol. 44, pp. 892-989. https://doi.org/10.2136/sssaj1980.03615995004400050002x
  19. Water Resource Management Information System (WAMIS) (2022), Rainfall data, Available at: www.wamis.go.kr, Han River Flood Control Office (Accessed: March 5, 2022) (in Korean).
  20. Zuloaga, P., Ordonez, M., Saaltink, M. W. and Castellote, M., (2009). "Capillarity in concrete disposal vaults and its influence in the behavior of isolation barriers at El cabril low and intermediate level radioactive waste disposal facility in Spain." WM2009 Conference, March 1-5, Phoenix, AZ.