DOI QR코드

DOI QR Code

RNA Metabolism in T Lymphocytes

  • Jin Ouk Choi (Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Severance Biomedical Science Institute and Brain Korea 21 Project, Yonsei University College of Medicine) ;
  • Jeong Hyeon Ham (Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Severance Biomedical Science Institute and Brain Korea 21 Project, Yonsei University College of Medicine) ;
  • Soo Seok Hwang (Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Severance Biomedical Science Institute and Brain Korea 21 Project, Yonsei University College of Medicine)
  • Received : 2022.04.06
  • Accepted : 2022.08.30
  • Published : 2022.10.31

Abstract

RNA metabolism plays a central role in regulating of T cell-mediated immunity. RNA processing, modifications, and regulations of RNA decay influence the tight and rapid regulation of gene expression during T cell phase transition. Thymic selection, quiescence maintenance, activation, differentiation, and effector functions of T cells are dependent on selective RNA modulations. Recent technical improvements have unveiled the complex crosstalk between RNAs and T cells. Moreover, resting T cells contain large amounts of untranslated mRNAs, implying that the regulation of RNA metabolism might be a key step in controlling gene expression. Considering the immunological significance of T cells for disease treatment, an understanding of RNA metabolism in T cells could provide new directions in harnessing T cells for therapeutic implications.

Keywords

Acknowledgement

We thank all members of the Department of Biochemistry and Molecular Biology of Yonsei University College of Medicine for administrative support. This work was supported by the Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine. This work of SSH was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2021R1A2C2093640 and 2018R1A5A2025079) and a faculty research grant (6-2021-0156) and a new faculty research seed money grant (2021-32-0055) of Yonsei University College of Medicine.

References

  1. Beyer AL, Osheim YN. Splice site selection, rate of splicing, and alternative splicing on nascent transcripts. Genes Dev 1988;2:754-765. https://doi.org/10.1101/gad.2.6.754
  2. Bird G, Zorio DA, Bentley DL. RNA polymerase II carboxy-terminal domain phosphorylation is required for cotranscriptional pre-mRNA splicing and 3'-end formation. Mol Cell Biol 2004;24:8963-8969. https://doi.org/10.1128/MCB.24.20.8963-8969.2004
  3. Nagaike T, Logan C, Hotta I, Rozenblatt-Rosen O, Meyerson M, Manley JL. Transcriptional activators enhance polyadenylation of mRNA precursors. Mol Cell 2011;41:409-418. https://doi.org/10.1016/j.molcel.2011.01.022
  4. Han D, Liu J, Chen C, Dong L, Liu Y, Chang R, Huang X, Liu Y, Wang J, Dougherty U, et al. Anti-tumour immunity controlled through mRNA m6A methylation and YTHDF1 in dendritic cells. Nature 2019;566:270-274. https://doi.org/10.1038/s41586-019-0916-x
  5. Tong J, Cao G, Zhang T, Sefik E, Amezcua Vesely MC, Broughton JP, Zhu S, Li H, Li B, Chen L, et al. m6A mRNA methylation sustains Treg suppressive functions. Cell Res 2018;28:253-256. https://doi.org/10.1038/cr.2018.7
  6. Love PE, Bhandoola A. Signal integration and crosstalk during thymocyte migration and emigration. Nat Rev Immunol 2011;11:469-477. https://doi.org/10.1038/nri2989
  7. Chapman NM, Boothby MR, Chi H. Metabolic coordination of T cell quiescence and activation. Nat Rev Immunol 2020;20:55-70. https://doi.org/10.1038/s41577-019-0203-y
  8. Chapman NM, Chi H. Hallmarks of t-cell exit from quiescence. Cancer Immunol Res 2018;6:502-508. https://doi.org/10.1158/2326-6066.CIR-17-0605
  9. Hwang JR, Byeon Y, Kim D, Park SG. Recent insights of T cell receptor-mediated signaling pathways for T cell activation and development. Exp Mol Med 2020;52:750-761. https://doi.org/10.1038/s12276-020-0435-8
  10. Kaech SM, Wherry EJ, Ahmed R. Effector and memory T-cell differentiation: implications for vaccine development. Nat Rev Immunol 2002;2:251-262. https://doi.org/10.1038/nri778
  11. Gebert LF, MacRae IJ. Regulation of microRNA function in animals. Nat Rev Mol Cell Biol 2019;20:21-37. https://doi.org/10.1038/s41580-018-0045-7
  12. Baumjohann D, Ansel KM. MicroRNA-mediated regulation of T helper cell differentiation and plasticity. Nat Rev Immunol 2013;13:666-678. https://doi.org/10.1038/nri3494
  13. Davari K, Lichti J, Gallus C, Greulich F, Uhlenhaut NH, Heinig M, Friedel CC, Glasmacher E. Rapid genome-wide recruitment of RNA polymerase ii drives transcription, splicing, and translation events during t cell responses. Cell Reports 2017;19:643-654. https://doi.org/10.1016/j.celrep.2017.03.069
  14. Araki K, Morita M, Bederman AG, Konieczny BT, Kissick HT, Sonenberg N, Ahmed R. Translation is actively regulated during the differentiation of CD8+ effector T cells. Nat Immunol 2017;18:1046-1057. https://doi.org/10.1038/ni.3795
  15. Wolf T, Jin W, Zoppi G, Vogel IA, Akhmedov M, Bleck CK, Beltraminelli T, Rieckmann JC, Ramirez NJ, Benevento M, et al. Dynamics in protein translation sustaining T cell preparedness. Nat Immunol 2020;21:927-937. https://doi.org/10.1038/s41590-020-0714-5
  16. Ricciardi S, Manfrini N, Alfieri R, Calamita P, Crosti MC, Gallo S, Muller R, Pagani M, Abrignani S, Biffo S. The translational machinery of human CD4+ T cells is poised for activation and controls the switch from quiescence to metabolic remodeling. Cell Metab 2018;28:895-906.e5. https://doi.org/10.1016/j.cmet.2018.08.009
  17. Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 2008;40:1413-1415. https://doi.org/10.1038/ng.259
  18. Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore SF, Schroth GP, Burge CB. Alternative isoform regulation in human tissue transcriptomes. Nature 2008;456:470-476. https://doi.org/10.1038/nature07509
  19. Jacob AG, Smith CW. Intron retention as a component of regulated gene expression programs. Hum Genet 2017;136:1043-1057. https://doi.org/10.1007/s00439-017-1791-x
  20. Martinez NM, Pan Q, Cole BS, Yarosh CA, Babcock GA, Heyd F, Zhu W, Ajith S, Blencowe BJ, Lynch KW. Alternative splicing networks regulated by signaling in human T cells. RNA 2012;18:1029-1040. https://doi.org/10.1261/rna.032243.112
  21. Lau CI, Rowell J, Yanez DC, Solanki A, Ross S, Ono M, Crompton T. The pioneer transcription factors Foxa1 and Foxa2 regulate alternative RNA splicing during thymocyte positive selection. Development 2021;148:dev199754.
  22. Whisenant TC, Peralta ER, Aarreberg LD, Gao NJ, Head SR, Ordoukhanian P, Williamson JR, Salomon DR. The activation-induced assembly of an RNA/protein interactome centered on the splicing factor U2AF2 regulates gene expression in human CD4 T cells. PLoS One 2015;10:e0144409.
  23. Qi Z, Wang F, Yu G, Wang D, Yao Y, You M, Liu J, Liu J, Sun Z, Ji C, et al. SRSF1 serves as a critical posttranscriptional regulator at the late stage of thymocyte development. Sci Adv 2021;7:eabf0753.
  24. Katsuyama T, Li H, Comte D, Tsokos GC, Moulton VR. Splicing factor SRSF1 controls T cell hyperactivity and systemic autoimmunity. J Clin Invest 2019;129:5411-5423. https://doi.org/10.1172/JCI127949
  25. Marasca F, Sinha S, Vadala R, Polimeni B, Ranzani V, Paraboschi EM, Burattin FV, Ghilotti M, Crosti M, Negri ML, et al. LINE1 are spliced in non-canonical transcript variants to regulate T cell quiescence and exhaustion. Nat Genet 2022;54:180-193. https://doi.org/10.1038/s41588-021-00989-7
  26. La Porta J, Matus-Nicodemos R, Valentin-Acevedo A, Covey LR. The rna-binding protein, polypyrimidine tract-binding protein 1 (PTBP1) is a key regulator of CD4 T cell activation. PLoS One 2016;11:e0158708.
  27. Dasgupta T, Ladd AN. The importance of CELF control: molecular and biological roles of the CUG-BP, Elav-like family of RNA-binding proteins. Wiley Interdiscip Rev RNA 2012;3:104-121. https://doi.org/10.1002/wrna.107
  28. Mallory MJ, Allon SJ, Qiu J, Gazzara MR, Tapescu I, Martinez NM, Fu XD, Lynch KW. Induced transcription and stability of CELF2 mRNA drives widespread alternative splicing during T-cell signaling. Proc Natl Acad Sci U S A 2015;112:E2139-E2148. https://doi.org/10.1073/pnas.1423695112
  29. Dong C, Yang DD, Tournier C, Whitmarsh AJ, Xu J, Davis RJ, Flavell RA. JNK is required for effector T-cell function but not for T-cell activation. Nature 2000;405:91-94. https://doi.org/10.1038/35011091
  30. Matsuda S, Moriguchi T, Koyasu S, Nishida E. T lymphocyte activation signals for interleukin-2 production involve activation of MKK6-p38 and MKK7-SAPK/JNK signaling pathways sensitive to cyclosporin A. J Biol Chem 1998;273:12378-12382. https://doi.org/10.1074/jbc.273.20.12378
  31. Martinez NM, Agosto L, Qiu J, Mallory MJ, Gazzara MR, Barash Y, Fu XD, Lynch KW. Widespread JNK-dependent alternative splicing induces a positive feedback loop through CELF2-mediated regulation of MKK7 during T-cell activation. Genes Dev 2015;29:2054-2066. https://doi.org/10.1101/gad.267245.115
  32. Mallory MJ, Jackson J, Weber B, Chi A, Heyd F, Lynch KW. Signal- and development-dependent alternative splicing of LEF1 in T cells is controlled by CELF2. Mol Cell Biol 2011;31:2184-2195. https://doi.org/10.1128/MCB.05170-11
  33. Bruhn L, Munnerlyn A, Grosschedl R. ALY, a context-dependent coactivator of LEF-1 and AML-1, is required for TCRalpha enhancer function. Genes Dev 1997;11:640-653. https://doi.org/10.1101/gad.11.5.640
  34. Yoshida H, Hunter CA. The immunobiology of interleukin-27. Annu Rev Immunol 2015;33:417-443. https://doi.org/10.1146/annurev-immunol-032414-112134
  35. da Gloria VG, Martins de Araujo M, Mafalda Santos A, Leal R, de Almeida SF, Carmo AM, Moreira A. T cell activation regulates CD6 alternative splicing by transcription dynamics and SRSF1. J Immunol 2014;193:391-399. https://doi.org/10.4049/jimmunol.1400038
  36. Hawse WF, Boggess WC, Morel PA. TCR signal strength regulates Akt substrate specificity to induce alternate murine Th and T regulatory cell differentiation programs. J Immunol 2017;199:589-597. https://doi.org/10.4049/jimmunol.1700369
  37. Bhattacharyya ND, Feng CG. Regulation of T helper cell fate by TCR signal strength. Front Immunol 2020;11:624.
  38. Meininger I, Griesbach RA, Hu D, Gehring T, Seeholzer T, Bertossi A, Kranich J, Oeckinghaus A, Eitelhuber AC, Greczmiel U, et al. Alternative splicing of MALT1 controls signalling and activation of CD4+ T cells. Nat Commun 2016;7:11292.
  39. Fry TJ, Mackall CL. The many faces of IL-7: from lymphopoiesis to peripheral T cell maintenance. J Immunol 2005;174:6571-6576. https://doi.org/10.4049/jimmunol.174.11.6571
  40. Gregory SG, Schmidt S, Seth P, Oksenberg JR, Hart J, Prokop A, Caillier SJ, Ban M, Goris A, Barcellos LF, et al. Interleukin 7 receptor alpha chain (IL7R) shows allelic and functional association with multiple sclerosis. Nat Genet 2007;39:1083-1091. https://doi.org/10.1038/ng2103
  41. Galarza-Munoz G, Briggs FB, Evsyukova I, Schott-Lerner G, Kennedy EM, Nyanhete T, Wang L, Bergamaschi L, Widen SG, Tomaras GD, et al. Human epistatic interaction controls IL7R splicing and increases multiple sclerosis risk. Cell 2017;169:72-84.e13. https://doi.org/10.1016/j.cell.2017.03.007
  42. Middleton R, Gao D, Thomas A, Singh B, Au A, Wong JJ, Bomane A, Cosson B, Eyras E, Rasko JE, et al. IRFinder: assessing the impact of intron retention on mammalian gene expression. Genome Biol 2017;18:51.
  43. Cho V, Mei Y, Sanny A, Chan S, Enders A, Bertram EM, Tan A, Goodnow CC, Andrews TD. The RNA-binding protein hnRNPLL induces a T cell alternative splicing program delineated by differential intron retention in polyadenylated RNA. Genome Biol 2014;15:R26.
  44. Ni T, Yang W, Han M, Zhang Y, Shen T, Nie H, Zhou Z, Dai Y, Yang Y, Liu P, et al. Global intron retention mediated gene regulation during CD4+ T cell activation. Nucleic Acids Res 2016;44:6817-6829. https://doi.org/10.1093/nar/gkw591
  45. Zhao BS, Roundtree IA, He C. Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol 2017;18:31-42. https://doi.org/10.1038/nrm.2016.132
  46. Cao G, Li HB, Yin Z, Flavell RA. Recent advances in dynamic m6A RNA modification. Open Biol 2016;6:160003.
  47. Fu Y, Dominissini D, Rechavi G, He C. Gene expression regulation mediated through reversible m6A RNA methylation. Nat Rev Genet 2014;15:293-306. https://doi.org/10.1038/nrg3724
  48. Ke S, Alemu EA, Mertens C, Gantman EC, Fak JJ, Mele A, Haripal B, Zucker-Scharff I, Moore MJ, Park CY, et al. A majority of m6A residues are in the last exons, allowing the potential for 3' UTR regulation. Genes Dev 2015;29:2037-2053. https://doi.org/10.1101/gad.269415.115
  49. Liu J, Yue Y, Han D, Wang X, Fu Y, Zhang L, Jia G, Yu M, Lu Z, Deng X, et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol 2014;10:93-95. https://doi.org/10.1038/nchembio.1432
  50. Liu N, Dai Q, Zheng G, He C, Parisien M, Pan T. N6-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature 2015;518:560-564. https://doi.org/10.1038/nature14234
  51. Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H, Weng X, Chen K, Shi H, He C. N6-methyladenosine modulates messenger RNA translation efficiency. Cell 2015;161:1388-1399. https://doi.org/10.1016/j.cell.2015.05.014
  52. Du H, Zhao Y, He J, Zhang Y, Xi H, Liu M, Ma J, Wu L. YTHDF2 destabilizes m6A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex. Nat Commun 2016;7:12626.
  53. Li HB, Tong J, Zhu S, Batista PJ, Duffy EE, Zhao J, Bailis W, Cao G, Kroehling L, Chen Y, et al. m6A mRNA methylation controls T cell homeostasis by targeting the IL-7/STAT5/SOCS pathways. Nature 2017;548:338-342. https://doi.org/10.1038/nature23450
  54. Zhu Y, Zhao Y, Zou L, Zhang D, Aki D, Liu YC. The E3 ligase VHL promotes follicular helper T cell differentiation via glycolytic-epigenetic control. J Exp Med 2019;216:1664-1681. https://doi.org/10.1084/jem.20190337
  55. Yao Y, Yang Y, Guo W, Xu L, You M, Zhang YC, Sun Z, Cui X, Yu G, Qi Z, et al. METTL3-dependent m6A modification programs T follicular helper cell differentiation. Nat Commun 2021;12:1333.
  56. Zhou J, Zhang X, Hu J, Qu R, Yu Z, Xu H, Chen H, Yan L, Ding C, Zou Q, et al. M6A demethylase ALKBH5 controls CD4+ T cell pathogenicity and promotes autoimmunity. Sci Adv 2021;7:eabg0470.
  57. Zhang Y, Zhao M, Sawalha AH, Richardson B, Lu Q. Impaired DNA methylation and its mechanisms in CD4+ T cells of systemic lupus erythematosus. J Autoimmun 2013;41:92-99. https://doi.org/10.1016/j.jaut.2013.01.005
  58. Dominissini D, Nachtergaele S, Moshitch-Moshkovitz S, Peer E, Kol N, Ben-Haim MS, Dai Q, Di Segni A, Salmon-Divon M, Clark WC, et al. The dynamic N1-methyladenosine methylome in eukaryotic messenger RNA. Nature 2016;530:441-446. https://doi.org/10.1038/nature16998
  59. Rak R, Polonsky M, Eizenberg-Magar I, Mo Y, Sakaguchi Y, Mizrahi O, Nachshon A, Reich-Zeliger S, Stern-Ginossar N, Dahan O, et al. Dynamic changes in tRNA modifications and abundance during T cell activation. Proc Natl Acad Sci U S A 2021;118:118.
  60. Otero DC, Baker DP, David M. IRF7-dependent IFN-β production in response to RANKL promotes medullary thymic epithelial cell development. J Immunol 2013;190:3289-3298. https://doi.org/10.4049/jimmunol.1203086
  61. Wu B, Peisley A, Richards C, Yao H, Zeng X, Lin C, Chu F, Walz T, Hur S. Structural basis for dsRNA recognition, filament formation, and antiviral signal activation by MDA5. Cell 2013;152:276-289. https://doi.org/10.1016/j.cell.2012.11.048
  62. Liddicoat BJ, Piskol R, Chalk AM, Ramaswami G, Higuchi M, Hartner JC, Li JB, Seeburg PH, Walkley CR. RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself. Science 2015;349:1115-1120. https://doi.org/10.1126/science.aac7049
  63. Nakahama T, Kato Y, Kim JI, Vongpipatana T, Suzuki Y, Walkley CR, Kawahara Y. ADAR1-mediated RNA editing is required for thymic self-tolerance and inhibition of autoimmunity. EMBO Rep 2018;19:e46303.
  64. Gutierrez-Vazquez C, Enright AJ, Rodriguez-Galan A, Perez-Garcia A, Collier P, Jones MR, Benes V, Mizgerd JP, Mittelbrunn M, Ramiro AR, et al. 3' Uridylation controls mature microRNA turnover during CD4 T-cell activation. RNA 2017;23:882-891. https://doi.org/10.1261/rna.060095.116
  65. Furuichi Y, LaFiandra A, Shatkin AJ. 5'-Terminal structure and mRNA stability. Nature 1977;266:235-239. https://doi.org/10.1038/266235a0
  66. Bernstein P, Ross J. Poly(A), poly(A) binding protein and the regulation of mRNA stability. Trends Biochem Sci 1989;14:373-377. https://doi.org/10.1016/0968-0004(89)90011-X
  67. Doidge R, Mittal S, Aslam A, Winkler GS. Deadenylation of cytoplasmic mRNA by the mammalian CCR4-NOT complex. Biochem Soc Trans 2012;40:896-901. https://doi.org/10.1042/BST20120074
  68. Wang Z, Jiao X, Carr-Schmid A, Kiledjian M. The hDcp2 protein is a mammalian mRNA decapping enzyme. Proc Natl Acad Sci U S A 2002;99:12663-12668. https://doi.org/10.1073/pnas.192445599
  69. Beelman CA, Stevens A, Caponigro G, LaGrandeur TE, Hatfield L, Fortner DM, Parker R. An essential component of the decapping enzyme required for normal rates of mRNA turnover. Nature 1996;382:642-646. https://doi.org/10.1038/382642a0
  70. Mao R, Yang R, Chen X, Harhaj EW, Wang X, Fan Y. Regnase-1, a rapid response ribonuclease regulating inflammation and stress responses. Cell Mol Immunol 2017;14:412-422. https://doi.org/10.1038/cmi.2016.70
  71. Yang F, Peng Y, Schoenberg DR. Endonuclease-mediated mRNA decay requires tyrosine phosphorylation of polysomal ribonuclease 1 (PMR1) for the targeting and degradation of polyribosome-bound substrate mRNA. J Biol Chem 2004;279:48993-49002. https://doi.org/10.1074/jbc.M409776200
  72. Ito-Kureha T, Miyao T, Nishijima S, Suzuki T, Koizumi SI, Villar-Briones A, Takahashi A, Akiyama N, Morita M, Naguro I, et al. The CCR4-NOT deadenylase complex safeguards thymic positive selection by down-regulating aberrant pro-apoptotic gene expression. Nat Commun 2020;11:6169.
  73. Brooks SA, Blackshear PJ. Tristetraprolin (TTP): interactions with mRNA and proteins, and current thoughts on mechanisms of action. Biochim Biophys Acta 2013;1829:666-679. https://doi.org/10.1016/j.bbagrm.2013.02.003
  74. Sandler H, Kreth J, Timmers HT, Stoecklin G. Not1 mediates recruitment of the deadenylase Caf1 to mRNAs targeted for degradation by tristetraprolin. Nucleic Acids Res 2011;39:4373-4386. https://doi.org/10.1093/nar/gkr011
  75. Ciofani M, Knowles GC, Wiest DL, von Boehmer H, Zuniga-Pflucker JC. Stage-specific and differential notch dependency at the αβ and γδ T lineage bifurcation. Immunity 2006;25:105-116. https://doi.org/10.1016/j.immuni.2006.05.010
  76. Hodson DJ, Janas ML, Galloway A, Bell SE, Andrews S, Li CM, Pannell R, Siebel CW, MacDonald HR, De Keersmaecker K, et al. Deletion of the RNA-binding proteins ZFP36L1 and ZFP36L2 leads to perturbed thymic development and T lymphoblastic leukemia. Nat Immunol 2010;11:717-724. https://doi.org/10.1038/ni.1901
  77. Vogel KU, Bell LS, Galloway A, Ahlfors H, Turner M. The RNA-binding proteins zfp36l1 and zfp36l2 enforce the thymic beta-selection checkpoint by limiting DNA damage response signaling and cell cycle progression. J Immunol 2016;197:2673-2685. https://doi.org/10.4049/jimmunol.1600854
  78. Galloway A, Turner M. Cell cycle RNA regulons coordinating early lymphocyte development. Wiley Interdiscip Rev RNA 2017;8:e1419.
  79. Salerno F, Engels S, van den Biggelaar M, van Alphen FP, Guislain A, Zhao W, Hodge DL, Bell SE, Medema JP, von Lindern M, et al. Translational repression of pre-formed cytokine-encoding mRNA prevents chronic activation of memory T cells. Nat Immunol 2018;19:828-837. https://doi.org/10.1038/s41590-018-0155-6
  80. Moore MJ, Blachere NE, Fak JJ, Park CY, Sawicka K, Parveen S, Zucker-Scharff I, Moltedo B, Rudensky AY, Darnell RB. ZFP36 RNA-binding proteins restrain T cell activation and anti-viral immunity. Elife 2018;7:e33057. 
  81. Heissmeyer V, Vogel KU. Molecular control of Tfh-cell differentiation by Roquin family proteins. Immunol Rev 2013;253:273-289. https://doi.org/10.1111/imr.12056
  82. Vogel KU, Edelmann SL, Jeltsch KM, Bertossi A, Heger K, Heinz GA, Zoller J, Warth SC, Hoefig KP, Lohs C, et al. Roquin paralogs 1 and 2 redundantly repress the Icos and Ox40 costimulator mRNAs and control follicular helper T cell differentiation. Immunity 2013;38:655-668. https://doi.org/10.1016/j.immuni.2012.12.004
  83. Glasmacher E, Hoefig KP, Vogel KU, Rath N, Du L, Wolf C, Kremmer E, Wang X, Heissmeyer V. Roquin binds inducible costimulator mRNA and effectors of mRNA decay to induce microRNA-independent post-transcriptional repression. Nat Immunol 2010;11:725-733. https://doi.org/10.1038/ni.1902
  84. Choi YS, Kageyama R, Eto D, Escobar TC, Johnston RJ, Monticelli L, Lao C, Crotty S. ICOS receptor instructs T follicular helper cell versus effector cell differentiation via induction of the transcriptional repressor Bcl6. Immunity 2011;34:932-946. https://doi.org/10.1016/j.immuni.2011.03.023
  85. Vinuesa CG, Cook MC, Angelucci C, Athanasopoulos V, Rui L, Hill KM, Yu D, Domaschenz H, Whittle B, Lambe T, et al. A RING-type ubiquitin ligase family member required to repress follicular helper T cells and autoimmunity. Nature 2005;435:452-458. https://doi.org/10.1038/nature03555
  86. Yu D, Tan AH, Hu X, Athanasopoulos V, Simpson N, Silva DG, Hutloff A, Giles KM, Leedman PJ, Lam KP, et al. Roquin represses autoimmunity by limiting inducible T-cell co-stimulator messenger RNA. Nature 2007;450:299-303. https://doi.org/10.1038/nature06253
  87. Hwang SS, Lim J, Yu Z, Kong P, Sefik E, Xu H, Harman CC, Kim LK, Lee GR, Li HB, et al. mRNA destabilization by BTG1 and BTG2 maintains T cell quiescence. Science 2020;367:1255-1260. https://doi.org/10.1126/science.aax0194
  88. Mino T, Murakawa Y, Fukao A, Vandenbon A, Wessels HH, Ori D, Uehata T, Tartey S, Akira S, Suzuki Y, et al. Regnase-1 and roquin regulate a common element in inflammatory mRNAs by spatiotemporally distinct mechanisms. Cell 2015;161:1058-1073. https://doi.org/10.1016/j.cell.2015.04.029
  89. Matsushita K, Takeuchi O, Standley DM, Kumagai Y, Kawagoe T, Miyake T, Satoh T, Kato H, Tsujimura T, Nakamura H, et al. Zc3h12a is an RNase essential for controlling immune responses by regulating mRNA decay. Nature 2009;458:1185-1190. https://doi.org/10.1038/nature07924
  90. Uehata T, Iwasaki H, Vandenbon A, Matsushita K, Hernandez-Cuellar E, Kuniyoshi K, Satoh T, Mino T, Suzuki Y, Standley DM, et al. Malt1-induced cleavage of regnase-1 in CD4+ helper T cells regulates immune activation. Cell 2013;153:1036-1049. https://doi.org/10.1016/j.cell.2013.04.034
  91. Kong G, Dou Y, Xiao X, Wang Y, Ming Y, Li XC. Transgenic expression of a mutant ribonuclease regnase-1 in T cells disturbs T cell development and functions. Front Immunol 2021;12:682220.
  92. Jeltsch KM, Hu D, Brenner S, Zoller J, Heinz GA, Nagel D, Vogel KU, Rehage N, Warth SC, Edelmann SL, et al. Cleavage of roquin and regnase-1 by the paracaspase MALT1 releases their cooperatively repressed targets to promote TH17 differentiation. Nat Immunol 2014;15:1079-1089. https://doi.org/10.1038/ni.3008
  93. Lisy S, Rothamel K, Ascano M. Rna binding proteins as pioneer determinants of infection: protective, proviral, or both? Viruses 2021;13:2172.
  94. Berkovits BD, Mayr C. Alternative 3' UTRs act as scaffolds to regulate membrane protein localization. Nature 2015;522:363-367. https://doi.org/10.1038/nature14321
  95. Papadaki O, Milatos S, Grammenoudi S, Mukherjee N, Keene JD, Kontoyiannis DL. Control of thymic T cell maturation, deletion and egress by the RNA-binding protein HuR. J Immunol 2009;182:6779-6788. https://doi.org/10.4049/jimmunol.0900377
  96. DeMicco A, Reich T, Arya R, Rivera-Reyes A, Fisher MR, Bassing CH. Lymphocyte lineage-specific and developmental stage specific mechanisms suppress cyclin D3 expression in response to DNA double strand breaks. Cell Cycle 2016;15:2882-2894. https://doi.org/10.1080/15384101.2016.1198861
  97. Techasintana P, Ellis JS, Glascock J, Gubin MM, Ridenhour SE, Magee JD, Hart ML, Yao P, Zhou H, Whitney MS, et al. The RNA-binding protein HuR posttranscriptionally regulates IL-2 homeostasis and CD4+ Th2 differentiation. Immunohorizons 2017;1:109-123. https://doi.org/10.4049/immunohorizons.1700017
  98. Gubin MM, Techasintana P, Magee JD, Dahm GM, Calaluce R, Martindale JL, Whitney MS, Franklin CL, Besch-Williford C, Hollingsworth JW, et al. Conditional knockout of the RNA-binding protein HuR in CD4+ T cells reveals a gene dosage effect on cytokine production. Mol Med 2014;20:93-108. https://doi.org/10.2119/molmed.2013.00127
  99. Chen J, Cascio J, Magee JD, Techasintana P, Gubin MM, Dahm GM, Calaluce R, Yu S, Atasoy U. Posttranscriptional gene regulation of IL-17 by the RNA-binding protein HuR is required for initiation of experimental autoimmune encephalomyelitis. J Immunol 2013;191:5441-5450. https://doi.org/10.4049/jimmunol.1301188