DOI QR코드

DOI QR Code

Why Should We Consider Potential Roles of Oral Bacteria in the Pathogenesis of Sjögren Syndrome?

  • Sung-Ho Chang (Department of Immunology and Molecular Microbiology, School of Dentistry and Dental Research Institute, Seoul National University) ;
  • Sung-Hwan Park (Divison of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea) ;
  • Mi-La Cho (Department of Medical Life Science, College of Medicine, The Catholic University of Korea) ;
  • Youngnim Choi (Department of Immunology and Molecular Microbiology, School of Dentistry and Dental Research Institute, Seoul National University)
  • 투고 : 2022.04.23
  • 심사 : 2022.06.22
  • 발행 : 2022.08.31

초록

Sjögren syndrome (SS) is a chronic autoimmune disorder that primarily targets the salivary and lacrimal glands. The pathology of these exocrine glands is characterized by periductal focal lymphocytic infiltrates, and both T cell-mediated tissue injury and autoantibodies that interfere with the secretion process underlie glandular hypofunction. In addition to these adaptive mechanisms, multiple innate immune pathways are dysregulated, particularly in the salivary gland epithelium. Our understanding of the pathogenetic mechanisms of SS has substantially improved during the past decade. In contrast to viral infection, bacterial infection has never been considered in the pathogenesis of SS. In this review, oral dysbiosis associated with SS and evidence for bacterial infection of the salivary glands in SS were reviewed. In addition, the potential contributions of bacterial infection to innate activation of ductal epithelial cells, plasmacytoid dendritic cells, and B cells and to the breach of tolerance via bystander activation of autoreactive T cells and molecular mimicry were discussed. The added roles of bacteria may extend our understanding of the pathogenetic mechanisms and therapeutic approaches for this autoimmune exocrinopathy.

키워드

과제정보

This study was supported by the National Research Foundation of Korea (Daejun, Korea) through the grants 2018R1A5A2024418 and 2020R1A2C2007038 awarded to Youngnim Choi and a grant 2020R1A2C1100163 awarded to Sung-Ho Chang.

참고문헌

  1. Brito-Zeron P, Baldini C, Bootsma H, Bowman SJ, Jonsson R, Mariette X, Sivils K, Theander E, Tzioufas A, Ramos-Casals M. Sjogren syndrome. Nat Rev Dis Primers 2016;2:16047.
  2. Nocturne G, Mariette X. B cells in the pathogenesis of primary Sjogren syndrome. Nat Rev Rheumatol 2018;14:133-145. https://doi.org/10.1038/nrrheum.2018.1
  3. Shiboski CH, Shiboski SC, Seror R, Criswell LA, Labetoulle M, Lietman TM, Rasmussen A, Scofield H, Vitali C, Bowman SJ, et al. 2016 American College of Rheumatology/European League Against Rheumatism classification criteria for primary Sjogren's syndrome: a consensus and data-driven methodology involving three international patient cohorts. Ann Rheum Dis 2017;76:9-16. https://doi.org/10.1136/annrheumdis-2016-210571
  4. Martin-Nares E, Hernandez-Molina G. Novel autoantibodies in Sjogren's syndrome: a comprehensive review. Autoimmun Rev 2019;18:192-198. https://doi.org/10.1016/j.autrev.2018.09.003
  5. Voulgarelis M, Tzioufas AG. Pathogenetic mechanisms in the initiation and perpetuation of Sjogren's syndrome. Nat Rev Rheumatol 2010;6:529-537. https://doi.org/10.1038/nrrheum.2010.118
  6. Verstappen GM, Pringle S, Bootsma H, Kroese FG. Epithelial-immune cell interplay in primary Sjogren syndrome salivary gland pathogenesis. Nat Rev Rheumatol 2021;17:333-348. https://doi.org/10.1038/s41584-021-00605-2
  7. Konttinen YT, Stegajev V, Al-Samadi A, Porola P, Hietanen J, Ainola M. Sjogren's syndome and extragonadal sex steroid formation: a clue to a better disease control? J Steroid Biochem Mol Biol 2015;145:237-244. https://doi.org/10.1016/j.jsbmb.2014.08.014
  8. Zeng M, Hu Z, Shi X, Li X, Zhan X, Li XD, Wang J, Choi JH, Wang KW, Purrington T, et al. MAVS, cGAS, and endogenous retroviruses in T-independent B cell responses. Science 2014;346:1486-1492. https://doi.org/10.1126/science.346.6216.1486
  9. Moyes DL, Martin A, Sawcer S, Temperton N, Worthington J, Griffiths DJ, Venables PJ. The distribution of the endogenous retroviruses HERV-K113 and HERV-K115 in health and disease. Genomics 2005;86:337-341. https://doi.org/10.1016/j.ygeno.2005.06.004
  10. Nakamura H, Shimizu T, Kawakami A. Role of viral infections in the pathogenesis of Sjogren's syndrome: different characteristics of Epstein-Barr virus and HTLV-1. J Clin Med 2020;9:1459.
  11. Nakamura H, Takahashi Y, Yamamoto-Fukuda T, Horai Y, Nakashima Y, Arima K, Nakamura T, Koji T, Kawakami A. Direct infection of primary salivary gland epithelial cells by human T lymphotropic virus type I in patients with Sjogren's syndrome. Arthritis Rheumatol 2015;67:1096-1106. https://doi.org/10.1002/art.39009
  12. Mariette X, Gozlan J, Clerc D, Bisson M, Morinet F. Detection of Epstein-Barr virus DNA by in situ hybridization and polymerase chain reaction in salivary gland biopsy specimens from patients with Sjogren's syndrome. Am J Med 1991;90:286-294. https://doi.org/10.1016/0002-9343(91)90567-H
  13. Croia C, Astorri E, Murray-Brown W, Willis A, Brokstad KA, Sutcliffe N, Piper K, Jonsson R, Tappuni AR, Pitzalis C, et al. Implication of Epstein-Barr virus infection in disease-specific autoreactive B cell activation in ectopic lymphoid structures of Sjogren's syndrome. Arthritis Rheumatol 2014;66:2545-2557. https://doi.org/10.1002/art.38726
  14. Iwakiri D, Zhou L, Samanta M, Matsumoto M, Ebihara T, Seya T, Imai S, Fujieda M, Kawa K, Takada K. Epstein-Barr virus (EBV)-encoded small RNA is released from EBV-infected cells and activates signaling from Toll-like receptor 3. J Exp Med 2009;206:2091-2099. https://doi.org/10.1084/jem.20081761
  15. Sanosyan A, Daien C, Nutz A, Bollore K, Bedin AS, Morel J, Zimmermann V, Nocturne G, Peries M, Guigue N, et al. Discrepancy of serological and molecular patterns of circulating Epstein-Barr virus reactivation in primary Sjogren's syndrome. Front Immunol 2019;10:1153.
  16. Tugizov SM, Berline JW, Palefsky JM. Epstein-Barr virus infection of polarized tongue and nasopharyngeal epithelial cells. Nat Med 2003;9:307-314. https://doi.org/10.1038/nm830
  17. Ikuta K, Satoh Y, Hoshikawa Y, Sairenji T. Detection of Epstein-Barr virus in salivas and throat washings in healthy adults and children. Microbes Infect 2000;2:115-120. https://doi.org/10.1016/S1286-4579(00)00277-X
  18. Roescher N, Lodde BM, Vosters JL, Tak PP, Catalan MA, Illei GG, Chiorini JA. Temporal changes in salivary glands of non-obese diabetic mice as a model for Sjogren's syndrome. Oral Dis 2012;18:96-106. https://doi.org/10.1111/j.1601-0825.2011.01852.x
  19. Molina C, Alliende C, Aguilera S, Kwon YJ, Leyton L, Martinez B, Leyton C, Perez P, Gonzalez MJ. Basal lamina disorganisation of the acini and ducts of labial salivary glands from patients with Sjogren's syndrome: association with mononuclear cell infiltration. Ann Rheum Dis 2006;65:178-183. https://doi.org/10.1136/ard.2004.033837
  20. van Ginkel MS, Haacke EA, Bootsma H, Arends S, van Nimwegen JF, Verstappen GM, Spijkervet FK, Vissink A, van der Vegt B, Kroese FG. Presence of intraepithelial B-lymphocytes is associated with the formation of lymphoepithelial lesions in salivary glands of primary Sjogren's syndrome patients. Clin Exp Rheumatol 2019;37 Suppl 118:42-48. https://doi.org/10.1136/annrheumdis-2018-eular.6637
  21. Gottenberg JE, Cagnard N, Lucchesi C, Letourneur F, Mistou S, Lazure T, Jacques S, Ba N, Ittah M, Lepajolec C, et al. Activation of IFN pathways and plasmacytoid dendritic cell recruitment in target organs of primary Sjogren's syndrome. Proc Natl Acad Sci U S A 2006;103:2770-2775. https://doi.org/10.1073/pnas.0510837103
  22. Villadangos JA, Young L. Antigen-presentation properties of plasmacytoid dendritic cells. Immunity 2008;29:352-361. https://doi.org/10.1016/j.immuni.2008.09.002
  23. Jego G, Palucka AK, Blanck JP, Chalouni C, Pascual V, Banchereau J. Plasmacytoid dendritic cells induce plasma cell differentiation through type I interferon and interleukin 6. Immunity 2003;19:225-234. https://doi.org/10.1016/S1074-7613(03)00208-5
  24. Riviere E, Pascaud J, Virone A, Dupre A, Ly B, Paoletti A, Seror R, Tchitchek N, Mingueneau M, Smith N, et al. Interleukin-7/interferon axis drives T cell and salivary gland epithelial cell interactions in Sjogren's syndrome. Arthritis Rheumatol 2021;73:631-640. https://doi.org/10.1002/art.41558
  25. Gong YZ, Nititham J, Taylor K, Miceli-Richard C, Sordet C, Wachsmann D, Bahram S, Georgel P, Criswell LA, Sibilia J, et al. Differentiation of follicular helper T cells by salivary gland epithelial cells in primary Sjogren's syndrome. J Autoimmun 2014;51:57-66. https://doi.org/10.1016/j.jaut.2013.11.003
  26. Pontarini E, Murray-Brown WJ, Croia C, Lucchesi D, Conway J, Rivellese F, Fossati-Jimack L, Astorri E, Prediletto E, Corsiero E, et al. Unique expansion of IL-21+ Tfh and Tph cells under control of ICOS identifies Sjogren's syndrome with ectopic germinal centres and MALT lymphoma. Ann Rheum Dis 2020;79:1588-1599. https://doi.org/10.1136/annrheumdis-2020-217646
  27. Szyszko EA, Brokstad KA, Oijordsbakken G, Jonsson MV, Jonsson R, Skarstein K. Salivary glands of primary Sjogren's syndrome patients express factors vital for plasma cell survival. Arthritis Res Ther 2011;13:R2.
  28. Tengner P, Halse AK, Haga HJ, Jonsson R, Wahren-Herlenius M. Detection of anti-Ro/SSA and anti-La/SSB autoantibody-producing cells in salivary glands from patients with Sjogren's syndrome. Arthritis Rheum 1998;41:2238-2248. https://doi.org/10.1002/1529-0131(199812)41:12<2238::AID-ART20>3.0.CO;2-V
  29. Lau CM, Broughton C, Tabor AS, Akira S, Flavell RA, Mamula MJ, Christensen SR, Shlomchik MJ, Viglianti GA, Rifkin IR, et al. RNA-associated autoantigens activate B cells by combined B cell antigen receptor/Toll-like receptor 7 engagement. J Exp Med 2005;202:1171-1177. https://doi.org/10.1084/jem.20050630
  30. Li M, Zou Y, Jiang Q, Jiang L, Yu Q, Ding X, Yu Y. A preliminary study of the oral microbiota in Chinese patients with Sjogren's syndrome. Arch Oral Biol 2016;70:143-148. https://doi.org/10.1016/j.archoralbio.2016.06.016
  31. Siddiqui H, Chen T, Aliko A, Mydel PM, Jonsson R, Olsen I. Microbiological and bioinformatics analysis of primary Sjogren's syndrome patients with normal salivation. J Oral Microbiol 2016;8:31119.
  32. van der Meulen TA, Harmsen HJ, Bootsma H, Liefers SC, Vich Vila A, Zhernakova A, Fu J, Wijmenga C, Spijkervet FK, Kroese FG, et al. Dysbiosis of the buccal mucosa microbiome in primary Sjogren's syndrome patients. Rheumatology (Oxford) 2018;57:2225-2234. https://doi.org/10.1093/rheumatology/key215
  33. van der Meulen TA, Harmsen HJ, Bootsma H, Liefers SC, Vich Vila A, Zhernakova A, Weersma RK, Spijkervet FK, Kroese FG, Vissink A. Reduced salivary secretion contributes more to changes in the oral microbiome of patients with primary Sjogren's syndrome than underlying disease. Ann Rheum Dis 2018;77:1542-1544. https://doi.org/10.1136/annrheumdis-2018-213026
  34. Zhou Z, Ling G, Ding N, Xun Z, Zhu C, Hua H, Chen X. Molecular analysis of oral microflora in patients with primary Sjogren's syndrome by using high-throughput sequencing. PeerJ 2018;6:e5649.
  35. Rusthen S, Kristoffersen AK, Young A, Galtung HK, Petrovski BE, Palm O, Enersen M, Jensen JL. Dysbiotic salivary microbiota in dry mouth and primary Sjogren's syndrome patients. PLoS One 2019;14:e0218319.
  36. Sembler-Moller ML, Belstrom D, Locht H, Enevold C, Pedersen AM. Next-generation sequencing of whole saliva from patients with primary Sjogren's syndrome and non-Sjogren's sicca reveals comparable salivary microbiota. J Oral Microbiol 2019;11:1660566.
  37. van der Meulen TA, Harmsen HJ, Vila AV, Kurilshikov A, Liefers SC, Zhernakova A, Fu J, Wijmenga C, Weersma RK, de Leeuw K, et al. Shared gut, but distinct oral microbiota composition in primary Sjogren's syndrome and systemic lupus erythematosus. J Autoimmun 2019;97:77-87. https://doi.org/10.1016/j.jaut.2018.10.009
  38. Sharma D, Sandhya P, Vellarikkal SK, Surin AK, Jayarajan R, Verma A, Kumar A, Ravi R, Danda D, Sivasubbu S, et al. Saliva microbiome in primary Sjogren's syndrome reveals distinct set of disease-associated microbes. Oral Dis 2020;26:295-301. https://doi.org/10.1111/odi.13191
  39. Alam J, Lee A, Lee J, Kwon DI, Park HK, Park JH, Jeon S, Baek K, Lee J, Park SH, et al. Dysbiotic oral microbiota and infected salivary glands in Sjogren's syndrome. PLoS One 2020;15:e0230667.
  40. Tseng YC, Yang HY, Lin WT, Chang CB, Chien HC, Wang HP, Chen CM, Wang JT, Li C, Wu SF, et al. Salivary dysbiosis in Sjogren's syndrome and a commensal-mediated immunomodulatory effect of salivary gland epithelial cells. NPJ Biofilms Microbiomes 2021;7:21.
  41. Palmer RJ, Cotton SL, Kokaras AS, Gardner P, Grisius M, Pelayo E, Warner B, Paster BJ, Alevizos I. Analysis of oral bacterial communities: comparison of HOMINGS with a tree-based approach implemented in QIIME. J Oral Microbiol 2019;11:1586413.
  42. Lee J, Jeon S, Choi Y. Two Sjogren syndrome-associated oral bacteria, Prevotella melaninogenica and Rothia mucilaginosa, induce the upregulation of major histocompatibility complex class I and hypoxia-associated cell death, respectively, in human salivary gland cells. Int J Oral Biol 2021;46:190-199. https://doi.org/10.11620/IJOB.2021.46.4.190
  43. Kawakami A, Nakashima K, Tamai M, Nakamura H, Iwanaga N, Fujikawa K, Aramaki T, Arima K, Iwamoto N, Ichinose K, et al. Toll-like receptor in salivary glands from patients with Sjogren's syndrome: functional analysis by human salivary gland cell line. J Rheumatol 2007.34:1019-1026.
  44. Zheng L, Zhang Z, Yu C, Yang C. Expression of Toll-like receptors 7, 8, and 9 in primary Sjogren's syndrome. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010;109:844-850. https://doi.org/10.1016/j.tripleo.2010.01.006
  45. Kwok SK, Cho ML, Her YM, Oh HJ, Park MK, Lee SY, Woo YJ, Ju JH, Park KS, Kim HY, et al. TLR2 ligation induces the production of IL-23/IL-17 via IL-6, STAT3 and NF-kB pathway in patients with primary Sjogren's syndrome. Arthritis Res Ther 2012;14:R64.
  46. Shimizu T, Nakamura H, Takatani A, Umeda M, Horai Y, Kurushima S, Michitsuji T, Nakashima Y, Kawakami A. Activation of Toll-like receptor 7 signaling in labial salivary glands of primary Sjogren's syndrome patients. Clin Exp Immunol 2019;196:39-51. https://doi.org/10.1111/cei.13242
  47. Spachidou MP, Bourazopoulou E, Maratheftis CI, Kapsogeorgou EK, Moutsopoulos HM, Tzioufas AG, Manoussakis MN. Expression of functional Toll-like receptors by salivary gland epithelial cells: increased mRNA expression in cells derived from patients with primary Sjogren's syndrome. Clin Exp Immunol 2007;147:497-503. https://doi.org/10.1111/j.1365-2249.2006.03311.x
  48. Kiripolsky J, Kramer JM. Current and emerging evidence for Toll-like receptor activation in Sjogren's syndrome. J Immunol Res 2018;2018:1246818.
  49. Uematsu S, Akira S. Toll-like receptors and Type I interferons. J Biol Chem 2007;282:15319-15323. https://doi.org/10.1074/jbc.R700009200
  50. Campos PC, Gomes MT, Guimaraes ES, Guimaraes G, Oliveira SC. TLR7 and TLR3 sense Brucella abortus RNA to induce proinflammatory cytokine production but they are dispensable for host control of infection. Front Immunol 2017;8:28.
  51. Cervantes JL, La Vake CJ, Weinerman B, Luu S, O'Connell C, Verardi PH, Salazar JC. Human TLR8 is activated upon recognition of Borrelia burgdorferi RNA in the phagosome of human monocytes. J Leukoc Biol 2013;94:1231-1241.
  52. Eigenbrod T, Dalpke AH. Bacterial RNA: an underestimated stimulus for innate immune responses. J Immunol 2015;195:411-418. https://doi.org/10.4049/jimmunol.1500530
  53. Pitha PM. Unexpected similarities in cellular responses to bacterial and viral invasion. Proc Natl Acad Sci U S A 2004;101:695-696. https://doi.org/10.1073/pnas.0307303101
  54. Lewis MA, Macfarlane TW, Lamey PJ, Leishman RE, Howie NM. Quantitative bacteriology of the parotid salivary gland in health and Sjogren's syndrome. Microb Ecol Health Dis 1993;6:29-34.
  55. Kaneda Y, Yamaai T, Mizukawa N, Nagatsuka H, Yamachika E, Gunduz M, Sawaki K, Yamanishi Y, Matsubara M, Katase N, et al. Localization of antimicrobial peptides human beta-defensins in minor salivary glands with Sjogren's syndrome. Eur J Oral Sci 2009;117:506-510. https://doi.org/10.1111/j.1600-0722.2009.00667.x
  56. Sisto M, Lorusso L, Lisi S. TLR2 signals via NF-κB to drive IL-15 production in salivary gland epithelial cells derived from patients with primary Sjogren's syndrome. Clin Exp Med 2017;17:341-350. https://doi.org/10.1007/s10238-016-0429-y
  57. Ittah M, Miceli-Richard C, Gottenberg JE, Sellam J, Eid P, Lebon P, Pallier C, Lepajolec C, Mariette X. Viruses induce high expression of BAFF by salivary gland epithelial cells through TLR- and type-I IFN-dependent and -independent pathways. Eur J Immunol 2008;38:1058-1064. https://doi.org/10.1002/eji.200738013
  58. Perez P, Goicovich E, Alliende C, Aguilera S, Leyton C, Molina C, Pinto R, Romo R, Martinez B, Gonzalez MJ. Differential expression of matrix metalloproteinases in labial salivary glands of patients with primary Sjogren's syndrome. Arthritis Rheum 2000;43:2807-2817. https://doi.org/10.1002/1529-0131(200012)43:12<2807::AID-ANR22>3.0.CO;2-M
  59. Azuma M, Aota K, Tamatani T, Motegi K, Yamashita T, Ashida Y, Hayashi Y, Sato M. Suppression of tumor necrosis factor α-induced matrix metalloproteinase 9 production in human salivary gland acinar cells by cepharanthine occurs via down-regulation of nuclear factor κB: a possible therapeutic agent for preventing the destruction of the acinar structure in the salivary glands of Sjogren's syndrome patients. Arthritis Rheum 2002;46:1585-1594. https://doi.org/10.1002/art.10315
  60. Gursoy UK, Kononen E, Uitto VJ. Stimulation of epithelial cell matrix metalloproteinase (MMP-2, -9, -13) and interleukin-8 secretion by fusobacteria. Oral Microbiol Immunol 2008;23:432-434. https://doi.org/10.1111/j.1399-302X.2008.00453.x
  61. Andrian E, Mostefaoui Y, Rouabhia M, Grenier D. Regulation of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases by Porphyromonas gingivalis in an engineered human oral mucosa model. J Cell Physiol 2007;211:56-62. https://doi.org/10.1002/jcp.20894
  62. Jie Bao G, Kari K, Tervahartiala T, Sorsa T, Meurman JH. Proteolytic activities of oral bacteria on proMMP-9 and the effect of synthetic proteinase inhibitors. Open Dent J 2008;2:96-102. https://doi.org/10.2174/1874210600802010096
  63. Singh B, Fleury C, Jalalvand F, Riesbeck K. Human pathogens utilize host extracellular matrix proteins laminin and collagen for adhesion and invasion of the host. FEMS Microbiol Rev 2012;36:1122-1180. https://doi.org/10.1111/j.1574-6976.2012.00340.x
  64. Tsunawaki S, Nakamura S, Ohyama Y, Sasaki M, Ikebe-Hiroki A, Hiraki A, Kadena T, Kawamura E, Kumamaru W, Shinohara M, et al. Possible function of salivary gland epithelial cells as nonprofessional antigen-presenting cells in the development of Sjogren's syndrome. J Rheumatol 2002;29:1884-1896.
  65. Ogawa N, Ping L, Zhenjun L, Takada Y, Sugai S. Involvement of the interferon-gamma-induced T cellattracting chemokines, interferon-gamma-inducible 10-kd protein (CXCL10) and monokine induced by interferon-gamma (CXCL9), in the salivary gland lesions of patients with Sjogren's syndrome. Arthritis Rheum 2002;46:2730-2741. https://doi.org/10.1002/art.10577
  66. Ogawa N, Kawanami T, Shimoyama K, Ping L, Sugai S. Expression of interferon-inducible T cell alpha chemoattractant (CXCL11) in the salivary glands of patients with Sjogren's syndrome. Clin Immunol 2004;112:235-238. https://doi.org/10.1016/j.clim.2004.03.008
  67. Cuello C, Palladinetti P, Tedla N, Di Girolamo N, Lloyd AR, McCluskey PJ, Wakefield D. Chemokine expression and leucocyte infiltration in Sjogren's syndrome. Br J Rheumatol 1998;37:779-783. https://doi.org/10.1093/rheumatology/37.7.779
  68. Jiang W, Deng Z, Dai X, Zhao W. PANoptosis: a new insight into oral infectious diseases. Front Immunol 2021;12:789610.
  69. Bitto NJ, Cheng L, Johnston EL, Pathirana R, Phan TK, Poon IK, O'Brien-Simpson NM, Hill AF, Stinear TP, Kaparakis-Liaskos M. Staphylococcus aureus membrane vesicles contain immunostimulatory DNA, RNA and peptidoglycan that activate innate immune receptors and induce autophagy. J Extracell Vesicles 2021;10:e12080.
  70. Cheng Y, Schorey JS. Extracellular vesicles deliver Mycobacterium RNA to promote host immunity and bacterial killing. EMBO Rep 2019;20:e46613.
  71. Hansen A, Odendahl M, Reiter K, Jacobi AM, Feist E, Scholze J, Burmester GR, Lipsky PE, Dorner T. Diminished peripheral blood memory B cells and accumulation of memory B cells in the salivary glands of patients with Sjogren's syndrome. Arthritis Rheum 2002;46:2160-2171. https://doi.org/10.1002/art.10445
  72. Bernasconi NL, Onai N, Lanzavecchia A. A role for Toll-like receptors in acquired immunity: upregulation of TLR9 by BCR triggering in naive B cells and constitutive expression in memory B cells. Blood 2003;101:4500-4504. https://doi.org/10.1182/blood-2002-11-3569
  73. Mansson A, Adner M, Hockerfelt U, Cardell LO. A distinct Toll-like receptor repertoire in human tonsillar B cells, directly activated by PamCSK, R-837 and CpG-2006 stimulation. Immunology 2006;118:539-548. https://doi.org/10.1111/j.1365-2567.2006.02392.x
  74. Dorner M, Brandt S, Tinguely M, Zucol F, Bourquin JP, Zauner L, Berger C, Bernasconi M, Speck RF, Nadal D. Plasma cell toll-like receptor (TLR) expression differs from that of B cells, and plasma cell TLR triggering enhances immunoglobulin production. Immunology 2009;128:573-579. https://doi.org/10.1111/j.1365-2567.2009.03143.x
  75. Agrawal S, Gupta S. TLR1/2, TLR7, and TLR9 signals directly activate human peripheral blood naive and memory B cell subsets to produce cytokines, chemokines, and hematopoietic growth factors. J Clin Immunol 2011;31:89-98.
  76. Bekeredjian-Ding IB, Wagner M, Hornung V, Giese T, Schnurr M, Endres S, Hartmann G. Plasmacytoid dendritic cells control TLR7 sensitivity of naive B cells via type I IFN. J Immunol 2005;174:4043-4050. https://doi.org/10.4049/jimmunol.174.7.4043
  77. Alam J, Kim YC, Choi Y. Potential role of bacterial infection in autoimmune diseases: a new aspect of molecular mimicry. Immune Netw 2014;14:7-13. https://doi.org/10.4110/in.2014.14.1.7
  78. Greiling TM, Dehner C, Chen X, Hughes K, Iniguez AJ, Boccitto M, Ruiz DZ, Renfroe SC, Vieira SM, Ruff WE, et al. Commensal orthologs of the human autoantigen Ro60 as triggers of autoimmunity in lupus. Sci Transl Med 2018;10:eaan2306.
  79. Doan T, Akileswaran L, Andersen D, Johnson B, Ko N, Shrestha A, Shestopalov V, Lee CS, Lee AY, Van Gelder RN. Paucibacterial microbiome and resident DNA virome of the healthy conjunctiva. Invest Ophthalmol Vis Sci 2016;57:5116-5126. https://doi.org/10.1167/iovs.16-19803
  80. Alam J, Koh JH, Kim N, Kwok SK, Park SH, Song YW, Park K, Choi Y. Detection of autoantibodies against aquaporin-5 in the sera of patients with primary Sjogren's syndrome. Immunol Res 2016;64:848-856. https://doi.org/10.1007/s12026-016-8786-x
  81. Jeon S, Lee J, Park SH, Kim HD, Choi Y. Associations of anti-aquaporin 5 autoantibodies with serologic and histopathological features of Sjogren's syndrome. J Clin Med 2019;8:E1863.
  82. Lee A, Yoo DK, Lee Y, Jeon S, Jung S, Noh J, Ju S, Hwang S, Kim HH, Kwon S, et al. Induction of anti-aquaporin 5 autoantibody production by immunization with a peptide derived from the aquaporin of Prevotella melaninogenica leads to reduced salivary flow in mice. Immune Netw 2021;21:e34.
  83. Hong S, Zhang Z, Liu H, Tian M, Zhu X, Zhang Z, Wang W, Zhou X, Zhang F, Ge Q, et al. B cells are the dominant antigen-presenting cells that activate naive CD4+  T cells upon immunization with a virusderived nanoparticle antigen. Immunity 2018;49:695-708.e4. https://doi.org/10.1016/j.immuni.2018.08.012
  84. Fujinami RS, von Herrath MG, Christen U, Whitton JL. Molecular mimicry, bystander activation, or viral persistence: infections and autoimmune disease. Clin Microbiol Rev 2006;19:80-94. https://doi.org/10.1128/CMR.19.1.80-94.2006
  85. Nair-Gupta P, Baccarini A, Tung N, Seyffer F, Florey O, Huang Y, Banerjee M, Overholtzer M, Roche PA, Tampe R, et al. TLR signals induce phagosomal MHC-I delivery from the endosomal recycling compartment to allow cross-presentation. Cell 2014;158:506-521. https://doi.org/10.1016/j.cell.2014.04.054
  86. Li Q, Zhang Q, Wang M, Zhao S, Ma J, Luo N, Li N, Li Y, Xu G, Li J. Interferon-gamma and tumor necrosis factor-alpha disrupt epithelial barrier function by altering lipid composition in membrane microdomains of tight junction. Clin Immunol 2008;126:67-80. https://doi.org/10.1016/j.clim.2007.08.017
  87. Lee J, Alam J, Choi E, Ko YK, Lee A, Choi Y. Association of a dysbiotic oral microbiota with the development of focal lymphocytic sialadenitis in IκB-ζ-deficient mice. NPJ Biofilms Microbiomes 2020;6:49.