DOI QR코드

DOI QR Code

Characterization of Immune Cells From the Lungs of Patients With Chronic Non-Tuberculous Mycobacteria or Pseudomonas aeruginosa Infection

  • Alan R. Schenkel (Department of Microbiology, Immunology, & Pathology, Colorado State University) ;
  • John D. Mitchell (Division of Cardiothoracic Surgery, University of Colorado Anschutz Medical Campus) ;
  • Carlyne D. Cool (Department of Pathology, National Jewish Health) ;
  • Xiyuan Bai (Department of Academic Affairs, National Jewish Health) ;
  • Steve Groshong (Department of Pathology, National Jewish Health) ;
  • Tilman Koelsch (Department of Radiology, National Jewish Health) ;
  • Deepshikha Verma (Department of Microbiology, Immunology, & Pathology, Colorado State University) ;
  • Diane Ordway (Department of Microbiology, Immunology, & Pathology, Colorado State University) ;
  • Edward D. Chan (Department of Academic Affairs, National Jewish Health)
  • Received : 2021.12.12
  • Accepted : 2022.03.15
  • Published : 2022.06.30

Abstract

Little is known of the lung cellular immunophenotypes in patients with non-tuberculous mycobacterial lung disease (NTM-LD). Flow-cytometric analyses for the major myeloid and lymphoid cell subsets were performed in less- and more-diseased areas of surgically resected lungs from six patients with NTM-LD and two with Pseudomonas aeruginosa lung disease (PsA-LD). Lymphocytes, comprised mainly of NK cells, CD4+ and CD8+ T cells, and B cells, accounted for ~60% of all leukocytes, with greater prevalence of T and B cells in more-diseased areas. In contrast, fewer neutrophils were found with decreased number in more-diseased areas. Compared to NTM-LD, lung tissues from patients with PsA-LD demonstrated relatively lower numbers of T and B lymphocytes but similar numbers of NK cells. While this study demonstrated a large influx of lymphocytes into the lungs of patients with chronic NTM-LD, further analyses of their phenotypes are necessary to determine the significance of these findings.

Keywords

References

  1. Fujita J, Ohtsuki Y, Suemitsu I, Shigeto E, Yamadori I, Obayashi Y, Miyawaki H, Dobashi N, Matsushima T, Takahara J. Pathological and radiological changes in resected lung specimens in Mycobacterium avium intracellulare complex disease. Eur Respir J 1999;13:535-540. https://doi.org/10.1183/09031936.99.13353599
  2. Kim TS, Koh WJ, Han J, Chung MJ, Lee JH, Lee KS, Kwon OJ. Hypothesis on the evolution of cavitary lesions in nontuberculous mycobacterial pulmonary infection: thin-section CT and histopathologic correlation. AJR Am J Roentgenol 2005;184:1247-1252. https://doi.org/10.2214/ajr.184.4.01841247
  3. Moore EH. Atypical mycobacterial infection in the lung: CT appearance. Radiology 1993;187:777-782. https://doi.org/10.1148/radiology.187.3.8497629
  4. Yu JA, Pomerantz M, Bishop A, Weyant MJ, Mitchell JD. Lady Windermere revisited: treatment with thoracoscopic lobectomy/segmentectomy for right middle lobe and lingular bronchiectasis associated with non-tuberculous mycobacterial disease. Eur J Cardiothorac Surg 2011;40:671-675.
  5. Mitchell JD. Surgical treatment of pulmonary nontuberculous mycobacterial infections. Thorac Surg Clin 2019;29:77-83. https://doi.org/10.1016/j.thorsurg.2018.09.011
  6. Jarand J, Levin A, Zhang L, Huitt G, Mitchell JD, Daley CL. Clinical and microbiologic outcomes in patients receiving treatment for Mycobacterium abscessus pulmonary disease. Clin Infect Dis 2011;52:565-571. https://doi.org/10.1093/cid/ciq237
  7. Pezzia W, Raleigh JW, Bailey MC, Toth EA, Silverblatt J. Treatment of pulmonary disease due to Mycobacterium kansasii: recent experience with rifampin. Rev Infect Dis 1981;3:1035-1039. https://doi.org/10.1093/clinids/3.5.1035
  8. Jeon K, Kwon OJ, Lee NY, Kim BJ, Kook YH, Lee SH, Park YK, Kim CK, Koh WJ. Antibiotic treatment of Mycobacterium abscessus lung disease: a retrospective analysis of 65 patients. Am J Respir Crit Care Med 2009;180:896-902. https://doi.org/10.1164/rccm.200905-0704OC
  9. Daley CL, Iaccarino JM, Lange C, Cambau E, Wallace RJ Jr, Andrejak C, Bottger EC, Brozek J, Griffith DE, Guglielmetti L, et al. Treatment of nontuberculous mycobacterial pulmonary disease: an official ATS/ERS/ESCMID/IDSA clinical practice guideline. Clin Infect Dis 2020;71:905-913. https://doi.org/10.1093/cid/ciaa1125
  10. Fox GJ, Mitnick CD, Benedetti A, Chan ED, Becerra M, Chiang CY, Keshavjee S, Koh WJ, Shiraishi Y, Viiklepp P, et al. Collaborative group for meta-analysis of individual patient data in MDR-TB. Surgery as an adjunctive treatment for multi-drug resistant tuberculosis: an individual patient data meta-analysis. Clin Infect Dis 2016;62:887-895. https://doi.org/10.1093/cid/ciw002
  11. Chan ED, Laurel V, Strand MJ, Chan JF, Huynh ML, Goble M, Iseman MD. Treatment and outcome analysis of 205 patients with multidrug-resistant tuberculosis. Am J Respir Crit Care Med 2004;169:1103-1109. https://doi.org/10.1164/rccm.200308-1159OC
  12. Yamazaki Y, Kubo K, Takamizawa A, Yamamoto H, Honda T, Sone S. Markers indicating deterioration of pulmonary Mycobacterium avium-intracellulare infection. Am J Respir Crit Care Med 1999;160:1851-1855. https://doi.org/10.1164/ajrccm.160.6.9902019
  13. Tighe RM, Redente EF, Yu YR, Herold S, Sperling AI, Curtis JL, Duggan R, Swaminathan S, Nakano H, Zacharias WJ, et al. Improving the quality and reproducibility of flow cytometry in the lung. An Official American Thoracic Society Workshop Report. Am J Respir Cell Mol Biol 2019;61:150-161. https://doi.org/10.1165/rcmb.2019-0191ST
  14. Han SA, Ko Y, Shin SJ, Jhun BW. Characteristics of circulating CD4+ T cell subsets in patients with Mycobacterium avium complex pulmonary disease. J Clin Med 2020;9:E1331.
  15. Ozaki T, Nakahira S, Tani K, Ogushi F, Yasuoka S, Ogura T. Differential cell analysis in bronchoalveolar lavage fluid from pulmonary lesions of patients with tuberculosis. Chest 1992;102:54-59. https://doi.org/10.1378/chest.102.1.54
  16. Sharma SK, Pande JN, Verma K. Bronchoalveolar lavage (BAL) in miliary tuberculosis. Tubercle 1988;69:175-178. https://doi.org/10.1016/0041-3879(88)90018-9
  17. Tsao TC, Chen CH, Hong JH, Hsieh MJ, Tsao KC, Lee CH. Shifts of T4/T8 T lymphocytes from BAL fluid and peripheral blood by clinical grade in patients with pulmonary tuberculosis. Chest 2002;122:1285-1291. https://doi.org/10.1378/chest.122.4.1285
  18. Yamazaki Y, Kubo K, Sekiguchi M, Honda T. Analysis of BAL fluid in M. avium-intracellulare infection in individuals without predisposing lung disease. Eur Respir J 1998;11:1227-1231. https://doi.org/10.1183/09031936.98.11061227
  19. Inomata T, Konno S, Nagai K, Suzuki M, Nishimura M. Neutrophil predominance in bronchoalveolar lavage fluid is associated with disease severity and progression of HRCT findings in pulmonary Mycobacterium avium infection. PLoS One 2018;13:e0190189.
  20. Phalke S, Aviszus K, Rubtsova K, Rubtsov A, Barkes B, Powers L, Warner B, Crooks JL, Kappler JW, Fernandez-Perez ER, et al. Age-associated B cells appear in patients with granulomatous lung diseases. Am J Respir Crit Care Med 2020;202:1013-1023. https://doi.org/10.1164/rccm.201911-2151OC
  21. Gieseck RL 3rd, Wilson MS, Wynn TA. Type 2 immunity in tissue repair and fibrosis. Nat Rev Immunol 2018;18:62-76. https://doi.org/10.1038/nri.2017.90
  22. Paun A, Bergeron ME, Haston CK. The Th1/Th17 balance dictates the fibrosis response in murine radiation-induced lung disease. Sci Rep 2017;7:11586.
  23. Chakraborty K, Chatterjee S, Bhattacharyya A. Impact of Treg on other T cell subsets in progression of fibrosis in experimental lung fibrosis. Tissue Cell 2018;53:87-92. https://doi.org/10.1016/j.tice.2018.06.003
  24. Theresine M, Patil ND, Zimmer J. Airway natural killer cells and bacteria in health and disease. Front Immunol 2020;11:585048.