DOI QR코드

DOI QR Code

Modeling Incorporating the Severity-Reducing Long-term Immunity: Higher Viral Transmission Paradoxically Reduces Severe COVID-19 During Endemic Transition

  • Hyukpyo Hong (Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Ji Yun Noh (Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Hyojung Lee (Department of Statistics, Kyungpook National University) ;
  • Sunhwa Choi (Division of Fundamental Research on Public Agenda, National Institute for Mathematical Sciences) ;
  • Boseung Choi (Biomedical Mathematics Group, Institute for Basic Science (IBS)) ;
  • Jae Kyoung Kim (Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Eui-Cheol Shin (Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST))
  • Received : 2022.03.11
  • Accepted : 2022.05.04
  • Published : 2022.06.30

Abstract

Natural infection with severe acute respiratory syndrome-coronavirus-2 or vaccination induces virus-specific immunity protecting hosts from infection and severe disease. While the infection-preventing immunity gradually declines, the severity-reducing immunity is relatively well preserved. Here, based on the different longevity of these distinct immunities, we develop a mathematical model to estimate courses of endemic transition of coronavirus disease 2019 (COVID-19). Our analysis demonstrates that high viral transmission unexpectedly reduces the rates of progression to severe COVID-19 during the course of endemic transition despite increased numbers of infection cases. Our study also shows that high viral transmission amongst populations with high vaccination coverages paradoxically accelerates the endemic transition of COVID-19 with reduced numbers of severe cases. These results provide critical insights for driving public health policies in the era of 'living with COVID-19.'

Keywords

Acknowledgement

The authors thank Life Science Editors for editing support. This work was supported by the Institute for Basic Science (IBS-R801-D2 to E.-C.S. and IBS-R029-C3 to J.K.K.), Korea Health Technology R&D Project through the Korea Health Industry Development Institute, funded by the Ministry of Health & Welfare, Republic of Korea HI20C0452 (J.Y.N.), National Research Foundation of Korea (NRF-2021R1A2C1095639 to S.C., NRF-2020R1F1A1A01066082 to B.C., and 2019H1A2A1075303 to H.H.)

References

  1. Cohen KW, Linderman SL, Moodie Z, Czartoski J, Lai L, Mantus G, Norwood C, Nyhoff LE, Edara VV, Floyd K, et al. Longitudinal analysis shows durable and broad immune memory after SARS-CoV-2 infection with persisting antibody responses and memory B and T cells. Cell Rep Med 2021;2:100354.
  2. Levin EG, Lustig Y, Cohen C, Fluss R, Indenbaum V, Amit S, Doolman R, Asraf K, Mendelson E, Ziv A, et al. Waning immune humoral response to BNT162b2 Covid-19 vaccine over 6 months. N Engl J Med 2021;385:e84.
  3. Doria-Rose N, Suthar MS, Makowski M, O'Connell S, McDermott AB, Flach B, Ledgerwood JE, Mascola JR, Graham BS, Lin BC, et al. Antibody persistence through 6 months after the second dose of mRNA-1273 vaccine for covid-19. N Engl J Med 2021;384:2259-2261.
  4. Liu C, Ginn HM, Dejnirattisai W, Supasa P, Wang B, Tuekprakhon A, Nutalai R, Zhou D, Mentzer AJ, Zhao Y, et al. Reduced neutralization of SARS-CoV-2 B.1.617 by vaccine and convalescent serum. Cell 2021;184:4220-4236.e13.
  5. Liu L, Iketani S, Guo Y, Chan JF, Wang M, Liu L, Luo Y, Chu H, Huang Y, Nair MS, et al. Striking antibody evasion manifested by the omicron variant of SARS-CoV-2. Nature 2021;602:676-681
  6. Chemaitelly H, Tang P, Hasan MR, AlMukdad S, Yassine HM, Benslimane FM, Al Khatib HA, Coyle P, Ayoub HH, Al Kanaani Z, et al. Waning of BNT162b2 vaccine protection against SARS-CoV-2 infection in Qatar. N Engl J Med 2021;385:e83.
  7. Mizrahi B, Lotan R, Kalkstein N, Peretz A, Perez G, Ben-Tov A, Chodick G, Gazit S, Patalon T. Correlation of SARS-CoV-2-breakthrough infections to time-from-vaccine. Nat Commun 2021;12:6379.
  8. Jung JH, Rha MS, Sa M, Choi HK, Jeon JH, Seok H, Park DW, Park SH, Jeong HW, Choi WS, et al. SARS-CoV-2-specific T cell memory is sustained in COVID-19 convalescent patients for 10 months with successful development of stem cell-like memory T cells. Nat Commun 2021;12:4043.
  9. Le Bert N, Tan AT, Kunasegaran K, Tham CY, Hafezi M, Chia A, Chng MH, Lin M, Tan N, Linster M, et al. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature 2020;584:457-462.
  10. Noh JY, Jeong HW, Kim JH, Shin EC. T cell-oriented strategies for controlling the COVID-19 pandemic. Nat Rev Immunol 2021;21:687-688.
  11. Matchett WE, Joag V, Stolley JM, Shepherd FK, Quarnstrom CF, Mickelson CK, Wijeyesinghe S, Soerens AG, Becker S, Thiede JM, et al. Cutting edge: Nucleocapsid vaccine elicits spike-independent sars-cov-2 protective immunity. J Immunol 2021;207:376-379.
  12. Zhuang Z, Lai X, Sun J, Chen Z, Zhang Z, Dai J, Liu D, Li Y, Li F, Wang Y, et al. Mapping and role of t cell response in sars-cov-2-infected mice. J Exp Med 2021;218:e20202187.
  13. Bange EM, Han NA, Wileyto P, Kim JY, Gouma S, Robinson J, Greenplate AR, Hwee MA, Porterfield F, Owoyemi O, et al. CD8+  T cells contribute to survival in patients with COVID-19 and hematologic cancer. Nat Med 2021;27:1280-1289.
  14. Veldhoen M, Simas JP. Endemic SARS-CoV-2 will maintain post-pandemic immunity. Nat Rev Immunol 2021;21:131-132.
  15. Antia R, Halloran ME. Transition to endemicity: understanding COVID-19. Immunity 2021;54:2172-2176.
  16. Lovell-Read FA, Funk S, Obolski U, Donnelly CA, Thompson RN. Interventions targeting non-symptomatic cases can be important to prevent local outbreaks: SARS-CoV-2 as a case study. J R Soc Interface 2021;18:20201014.
  17. Sahai SY, Gurukar S, KhudaBukhsh WR, Parthasarathy S, Rempala GA. A machine learning model for nowcasting epidemic incidence. Math Biosci 2022;343: 108677.
  18. Kucharski AJ, Russell TW, Diamond C, Liu Y, Edmunds J, Funk S, Eggo RM, Sun F, Jit M, Munday JD, et al. Early dynamics of transmission and control of COVID-19: a mathematical modelling study. Lancet Infect Dis 2020;20:553-558.
  19. Kissler SM, Tedijanto C, Goldstein E, Grad YH, Lipsitch M. Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period. Science 2020;368:860-868.
  20. Saad-Roy CM, Morris SE, Metcalf CJ, Mina MJ, Baker RE, Farrar J, Holmes EC, Pybus OG, Graham AL, Levin SA, et al. Epidemiological and evolutionary considerations of SARS-CoV-2 vaccine dosing regimes. Science 2021;372:363-370.
  21. Saad-Roy CM, Wagner CE, Baker RE, Morris SE, Farrar J, Graham AL, Levin SA, Mina MJ, Metcalf CJ, Grenfell BT. Immune life history, vaccination, and the dynamics of SARS-CoV-2 over the next 5 years. Science 2020;370:811-818.
  22. Lavine JS, Bjornstad ON, Antia R. Immunological characteristics govern the transition of COVID-19 to endemicity. Science 2021;371:741-745.
  23. Thomas SJ, Moreira ED Jr, Kitchin N, Absalon J, Gurtman A, Lockhart S, Perez JL, Perez Marc G, Polack FP, Zerbini C, et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine through 6 months. N Engl J Med 2021;385:1761-1773.
  24. Our World in Data. Coronavirus pandemic (COVID-19) [Internet]. Available at https://ourworldindata.org/coronavirus [accessed on 24 April 2022].
  25. Falsey AR, Frenck RW Jr, Walsh EE, Kitchin N, Absalon J, Gurtman A, Lockhart S, Bailey R, Swanson KA, Xu X, et al. SARS-CoV-2 neutralization with BNT162b2 vaccine dose 3. N Engl J Med 2021;385:1627-1629.
  26. Bertrand D, Hamzaoui M, Lemee V, Lamulle J, Laurent C, Etienne I, Lemoine M, Lebourg L, Hanoy M, Le Roy F, et al. Antibody and T-cell response to a third dose of SARS-CoV-2 mRNA BNT162b2 vaccine in kidney transplant recipients. Kidney Int 2021;100:1337-1340.
  27. Barda N, Dagan N, Cohen C, Hernan MA, Lipsitch M, Kohane IS, Reis BY, Balicer RD. Effectiveness of a third dose of the BNT162b2 mRNA COVID-19 vaccine for preventing severe outcomes in Israel: an observational study. Lancet 2021;398:2093-2100.
  28. Jayk Bernal A, Gomes da Silva MM, Musungaie DB, Kovalchuk E, Gonzalez A, Delos Reyes V, Martin-Quiros A, Caraco Y, Williams-Diaz A, Brown ML, et al. Molnupiravir for oral treatment of covid-19 in nonhospitalized patients. N Engl J Med 2022;386:509-520.
  29. Kumar S, Thambiraja TS, Karuppanan K, Subramaniam G. Omicron and delta variant of SARS-CoV-2: a comparative computational study of spike protein. J Med Virol 2022;94:1641-1649.
  30. Nishiura H, Ito K, Anzai A, Kobayashi T, Piantham C, Rodriguez-Morales AJ. Relative reproduction number of SARS-CoV-2 omicron (b.1.1.529) compared with delta variant in South Africa. J Clin Med 2021;11:11.
  31. Garcia-Beltran WF, St Denis KJ, Hoelzemer A, Lam EC, Nitido AD, Sheehan ML, Berrios C, Ofoman O, Chang CC, Hauser BM, et al. mRNA-based COVID-19 vaccine boosters induce neutralizing immunity against SARS-CoV-2 Omicron variant. Cell 2022;185:457-466.e4.
  32. Kozlov M. Omicron's feeble attack on the lungs could make it less dangerous. Nature 2022;601:177.