DOI QR코드

DOI QR Code

Change of Dendritic Cell Subsets Involved in Protection Against Listeria monocytogenes Infection in Short-Term-Fasted Mice

  • Young-Jun Ju (Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University) ;
  • Kyung-Min Lee (Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University) ;
  • Girak Kim (Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University) ;
  • Yoon-Chul Kye (Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University) ;
  • Han Wool Kim (Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University) ;
  • Hyuk Chu (Division of Zoonotic and Vector Borne Disease Research, Center for Infectious Disease Research, National Institute of Health) ;
  • Byung-Chul Park (Institute of Green Bio Science and Technology, Seoul National University) ;
  • Jae-Ho Cho (Department of Microbiology and Immunology, Chonnam National University Medical School, Hwasun Hospital) ;
  • Pahn-Shick Chang (Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University) ;
  • Seung Hyun Han (Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Cheol-Heui Yun (Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University)
  • 투고 : 2021.09.03
  • 심사 : 2022.03.13
  • 발행 : 2022.04.30

초록

The gastrointestinal tract is the first organ directly affected by fasting. However, little is known about how fasting influences the intestinal immune system. Intestinal dendritic cells (DCs) capture antigens, migrate to secondary lymphoid organs, and provoke adaptive immune responses. We evaluated the changes of intestinal DCs in mice with short-term fasting and their effects on protective immunity against Listeria monocytogenes (LM). Fasting induced an increased number of CD103+CD11b- DCs in both small intestinal lamina propria (SILP) and mesenteric lymph nodes (mLN). The SILP CD103+CD11b- DCs showed proliferation and migration, coincident with increased levels of GM-CSF and C-C chemokine receptor type 7, respectively. At 24 h post-infection with LM, there was a significant reduction in the bacterial burden in the spleen, liver, and mLN of the short-term-fasted mice compared to those fed ad libitum. Also, short-term-fasted mice showed increased survival after LM infection compared with ad libitum-fed mice. It could be that significantly high TGF-β2 and Aldh1a2 expression in CD103+CD11b- DCs in mice infected with LM might affect to increase of Foxp3+ regulatory T cells. Changes of major subset of DCs from CD103+ to CD103- may induce the increase of IFN-γ-producing cells with forming Th1-biased environment. Therefore, the short-term fasting affects protection against LM infection by changing major subset of intestinal DCs from tolerogenic to Th1 immunogenic.

키워드

과제정보

This work was carried out with the support of Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ016201 and Project No. PJ016613), Rural Development Administration, Republic of Korea. Y-JJ, K-ML, GK, Y-CK, and HWK were supported by the BK21 Plus Program of the Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea.

참고문헌

  1. Fontana L, Partridge L, Longo VD. Extending healthy life span--from yeast to humans. Science 2010;328:321-326. https://doi.org/10.1126/science.1172539
  2. Longo VD, Mattson MP. Fasting: molecular mechanisms and clinical applications. Cell Metab 2014;19:181-192. https://doi.org/10.1016/j.cmet.2013.12.008
  3. Wing EJ, Young JB. Acute starvation protects mice against Listeria monocytogenes. Infect Immun 1980;28:771-776. https://doi.org/10.1128/iai.28.3.771-776.1980
  4. Mitchell JR, Verweij M, Brand K, van de Ven M, Goemaere N, van den Engel S, Chu T, Forrer F, Muller C, de Jong M, et al. Short-term dietary restriction and fasting precondition against ischemia reperfusion injury in mice. Aging Cell 2010;9:40-53. https://doi.org/10.1111/j.1474-9726.2009.00532.x
  5. Shushimita S, de Bruijn MJ, de Bruin RW, IJzermans JN, Hendriks RW, Dor FJ. Dietary restriction and fasting arrest B and T cell development and increase mature B and T cell numbers in bone marrow. PLoS One 2014;9:e87772.
  6. Lenaerts K, Sokolovic M, Bouwman FG, Lamers WH, Mariman EC, Renes J. Starvation induces phase-specific changes in the proteome of mouse small intestine. J Proteome Res 2006;5:2113-2122. https://doi.org/10.1021/pr060183+
  7. Ahima RS, Prabakaran D, Mantzoros C, Qu D, Lowell B, Maratos-Flier E, Flier JS. Role of leptin in the neuroendocrine response to fasting. Nature 1996;382:250-252. https://doi.org/10.1038/382250a0
  8. Saucillo DC, Gerriets VA, Sheng J, Rathmell JC, Maciver NJ. Leptin metabolically licenses T cells for activation to link nutrition and immunity. J Immunol 2014;192:136-144. https://doi.org/10.4049/jimmunol.1301158
  9. La Cava A, Matarese G. The weight of leptin in immunity. Nat Rev Immunol 2004;4:371-379. https://doi.org/10.1038/nri1350
  10. Moraes-Vieira PM, Larocca RA, Bassi EJ, Peron JP, Andrade-Oliveira V, Wasinski F, Araujo R, Thornley T, Quintana FJ, Basso AS, et al. Leptin deficiency impairs maturation of dendritic cells and enhances induction of regulatory T and Th17 cells. Eur J Immunol 2014;44:794-806. https://doi.org/10.1002/eji.201343592
  11. Al-Hassi HO, Bernardo D, Murugananthan AU, Mann ER, English NR, Jones A, Kamm MA, Arebi N, Hart AL, Blakemore AI, et al. A mechanistic role for leptin in human dendritic cell migration: differences between ileum and colon in health and Crohn's disease. Mucosal Immunol 2013;6:751-761. https://doi.org/10.1038/mi.2012.113
  12. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, Pulendran B, Palucka K. Immunobiology of dendritic cells. Annu Rev Immunol 2000;18:767-811. https://doi.org/10.1146/annurev.immunol.18.1.767
  13. Eisenbarth SC. Dendritic cell subsets in T cell programming: location dictates function. Nat Rev Immunol 2019;19:89-103. https://doi.org/10.1038/s41577-018-0088-1
  14. Scott CL, Aumeunier AM, Mowat AM. Intestinal CD103+ dendritic cells: master regulators of tolerance? Trends Immunol 2011;32:412-419. https://doi.org/10.1016/j.it.2011.06.003
  15. Huang FP, Platt N, Wykes M, Major JR, Powell TJ, Jenkins CD, MacPherson GG. A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to T cell areas of mesenteric lymph nodes. J Exp Med 2000;191:435-444. https://doi.org/10.1084/jem.191.3.435
  16. Farache J, Koren I, Milo I, Gurevich I, Kim KW, Zigmond E, Furtado GC, Lira SA, Shakhar G. Luminal bacteria recruit CD103+ dendritic cells into the intestinal epithelium to sample bacterial antigens for presentation. Immunity 2013;38:581-595. https://doi.org/10.1016/j.immuni.2013.01.009
  17. Jang MH, Sougawa N, Tanaka T, Hirata T, Hiroi T, Tohya K, Guo Z, Umemoto E, Ebisuno Y, Yang BG, et al. CCR7 is critically important for migration of dendritic cells in intestinal lamina propria to mesenteric lymph nodes. J Immunol 2006;176:803-810. https://doi.org/10.4049/jimmunol.176.2.803
  18. Coombes JL, Siddiqui KR, Arancibia-Carcamo CV, Hall J, Sun CM, Belkaid Y, Powrie F. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J Exp Med 2007;204:1757-1764. https://doi.org/10.1084/jem.20070590
  19. Sun CM, Hall JA, Blank RB, Bouladoux N, Oukka M, Mora JR, Belkaid Y. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J Exp Med 2007;204:1775-1785. https://doi.org/10.1084/jem.20070602
  20. Hill JA, Hall JA, Sun CM, Cai Q, Ghyselinck N, Chambon P, Belkaid Y, Mathis D, Benoist C. Retinoic acid enhances Foxp3 induction indirectly by relieving inhibition from CD4+CD44hi cells. Immunity 2008;29:758-770. https://doi.org/10.1016/j.immuni.2008.09.018
  21. Cerovic V, Houston SA, Westlund J, Utriainen L, Davison ES, Scott CL, Bain CC, Joeris T, Agace WW, Kroczek RA, et al. Lymph-borne cd8alpha dendritic cells are uniquely able to cross-prime CD8 T cells with antigen acquired from intestinal epithelial cells. Mucosal Immunol 2015;8:38-48.  https://doi.org/10.1038/mi.2014.40
  22. Edelson BT, Kc W, Juang R, Kohyama M, Benoit LA, Klekotka PA, Moon C, Albring JC, Ise W, Michael DG, et al. Peripheral CD103+ dendritic cells form a unified subset developmentally related to CD8alpha+ conventional dendritic cells. J Exp Med 2010;207:823-836. https://doi.org/10.1084/jem.20091627
  23. Liang J, Huang HI, Benzatti FP, Karlsson AB, Zhang JJ, Youssef N, Ma A, Hale LP, Hammer GE. Inflammatory Th1 and Th17 in the intestine are each driven by functionally specialized dendritic cells with distinct requirements for myd88. Cell Reports 2016;17:1330-1343. https://doi.org/10.1016/j.celrep.2016.09.091
  24. Welty NE, Staley C, Ghilardi N, Sadowsky MJ, Igyarto BZ, Kaplan DH. Intestinal lamina propria dendritic cells maintain T cell homeostasis but do not affect commensalism. J Exp Med 2013;210:2011-2024. https://doi.org/10.1084/jem.20130728
  25. Cerovic V, Houston SA, Scott CL, Aumeunier A, Yrlid U, Mowat AM, Milling SW. Intestinal CD103(-) dendritic cells migrate in lymph and prime effector T cells. Mucosal Immunol 2013;6:104-113. https://doi.org/10.1038/mi.2012.53
  26. Wang T, Hung CC, Randall DJ. The comparative physiology of food deprivation: from feast to famine. Annu Rev Physiol 2006;68:223-251. https://doi.org/10.1146/annurev.physiol.68.040104.105739
  27. Koch AL. Turbidity measurements of bacterial cultures in some available commercial instruments. Anal Biochem 1970;38:252-259. https://doi.org/10.1016/0003-2697(70)90174-0
  28. Foulds KE, Zenewicz LA, Shedlock DJ, Jiang J, Troy AE, Shen H. Cutting edge: CD4 and CD8 T cells are intrinsically different in their proliferative responses. J Immunol 2002;168:1528-1532. https://doi.org/10.4049/jimmunol.168.4.1528
  29. Joeris T, Muller-Luda K, Agace WW, Mowat AM. Diversity and functions of intestinal mononuclear phagocytes. Mucosal Immunol 2017;10:845-864. https://doi.org/10.1038/mi.2017.22
  30. Cepek KL, Shaw SK, Parker CM, Russell GJ, Morrow JS, Rimm DL, Brenner MB. Adhesion between epithelial cells and T lymphocytes mediated by E-cadherin and the alpha E beta 7 integrin. Nature 1994;372:190-193. https://doi.org/10.1038/372190a0
  31. Becher B, Tugues S, Greter M. GM-CSF: from growth factor to central mediator of tissue inflammation. Immunity 2016;45:963-973. https://doi.org/10.1016/j.immuni.2016.10.026
  32. van de Laar L, Coffer PJ, Woltman AM. Regulation of dendritic cell development by GM-CSF: molecular control and implications for immune homeostasis and therapy. Blood 2012;119:3383-3393. https://doi.org/10.1182/blood-2011-11-370130
  33. Hirata Y, Egea L, Dann SM, Eckmann L, Kagnoff MF. GM-CSF-facilitated dendritic cell recruitment and survival govern the intestinal mucosal response to a mouse enteric bacterial pathogen. Cell Host Microbe 2010;7:151-163. https://doi.org/10.1016/j.chom.2010.01.006
  34. Clatworthy MR, Aronin CE, Mathews RJ, Morgan NY, Smith KG, Germain RN. Immune complexes stimulate CCR7-dependent dendritic cell migration to lymph nodes. Nat Med 2014;20:1458-1463. https://doi.org/10.1038/nm.3709
  35. Orgun NN, Mathis MA, Wilson CB, Way SS. Deviation from a strong Th1-dominated to a modest Th17-dominated CD4 T cell response in the absence of IL-12p40 and type I IFNs sustains protective CD8 T cells. J Immunol 2008;180:4109-4115. https://doi.org/10.4049/jimmunol.180.6.4109
  36. Zhao D, Zhang C, Yi T, Lin CL, Todorov I, Kandeel F, Forman S, Zeng D. In vivo-activated CD103+CD4+ regulatory T cells ameliorate ongoing chronic graft-versus-host disease. Blood 2008;112:2129-2138. https://doi.org/10.1182/blood-2008-02-140277
  37. Suffia I, Reckling SK, Salay G, Belkaid Y. A role for CD103 in the retention of CD4+CD25+ Treg and control of Leishmania major infection. J Immunol 2005;174:5444-5455. https://doi.org/10.4049/jimmunol.174.9.5444
  38. Zhu J, Davidson TS, Wei G, Jankovic D, Cui K, Schones DE, Guo L, Zhao K, Shevach EM, Paul WE. Downregulation of Gfi-1 expression by TGF-beta is important for differentiation of Th17 and CD103+ inducible regulatory T cells. J Exp Med 2009;206:329-341. https://doi.org/10.1084/jem.20081666
  39. Yoo S, Ha SJ. Generation of tolerogenic dendritic cells and their therapeutic applications. Immune Netw 2016;16:52-60. https://doi.org/10.4110/in.2016.16.1.52
  40. Yamazaki S, Dudziak D, Heidkamp GF, Fiorese C, Bonito AJ, Inaba K, Nussenzweig MC, Steinman RM. CD8+ CD205+ splenic dendritic cells are specialized to induce Foxp3+ regulatory T cells. J Immunol 2008;181:6923-6933. https://doi.org/10.4049/jimmunol.181.10.6923
  41. Cignarella F, Cantoni C, Ghezzi L, Salter A, Dorsett Y, Chen L, Phillips D, Weinstock GM, Fontana L, Cross AH, et al. Intermittent fasting confers protection in CNS autoimmunity by altering the gut microbiota. Cell Metab 2018;27:1222-1235.e6. https://doi.org/10.1016/j.cmet.2018.05.006
  42. Wang A, Huen SC, Luan HH, Yu S, Zhang C, Gallezot JD, Booth CJ, Medzhitov R. Opposing effects of fasting metabolism on tissue tolerance in bacterial and viral inflammation. Cell 2016;166:1512-1525.e12. https://doi.org/10.1016/j.cell.2016.07.026
  43. Nagai M, Noguchi R, Takahashi D, Morikawa T, Koshida K, Komiyama S, Ishihara N, Yamada T, Kawamura YI, Muroi K, et al. Fasting-refeeding impacts immune cell dynamics and mucosal immune responses. Cell 2019;178:1072-1087.e14. https://doi.org/10.1016/j.cell.2019.07.047
  44. Jaensson E, Uronen-Hansson H, Pabst O, Eksteen B, Tian J, Coombes JL, Berg PL, Davidsson T, Powrie F, Johansson-Lindbom B, et al. Small intestinal CD103+ dendritic cells display unique functional properties that are conserved between mice and humans. J Exp Med 2008;205:2139-2149. https://doi.org/10.1084/jem.20080414
  45. Greter M, Helft J, Chow A, Hashimoto D, Mortha A, Agudo-Cantero J, Bogunovic M, Gautier EL, Miller J, Leboeuf M, et al. GM-CSF controls nonlymphoid tissue dendritic cell homeostasis but is dispensable for the differentiation of inflammatory dendritic cells. Immunity 2012;36:1031-1046. https://doi.org/10.1016/j.immuni.2012.03.027
  46. Karsunky H, Merad M, Cozzio A, Weissman IL, Manz MG. Flt3 ligand regulates dendritic cell development from Flt3+ lymphoid and myeloid-committed progenitors to Flt3+ dendritic cells in vivo. J Exp Med 2003;198:305-313. https://doi.org/10.1084/jem.20030323
  47. Waskow C, Liu K, Darrasse-Jeze G, Guermonprez P, Ginhoux F, Merad M, Shengelia T, Yao K, Nussenzweig M. The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues. Nat Immunol 2008;9:676-683. https://doi.org/10.1038/ni.1615
  48. Bogunovic M, Ginhoux F, Helft J, Shang L, Hashimoto D, Greter M, Liu K, Jakubzick C, Ingersoll MA, Leboeuf M, et al. Origin of the lamina propria dendritic cell network. Immunity 2009;31:513-525. https://doi.org/10.1016/j.immuni.2009.08.010
  49. Schulz O, Jaensson E, Persson EK, Liu X, Worbs T, Agace WW, Pabst O. Intestinal CD103+, but not CX3CR1+, antigen sampling cells migrate in lymph and serve classical dendritic cell functions. J Exp Med 2009;206:3101-3114. https://doi.org/10.1084/jem.20091925
  50. Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell 2008;133:775-787. https://doi.org/10.1016/j.cell.2008.05.009
  51. Levings MK, Allan S, d'Hennezel E, Piccirillo CA. Functional dynamics of naturally occurring regulatory T cells in health and autoimmunity. Adv Immunol 2006;92:119-155. https://doi.org/10.1016/S0065-2776(06)92003-3
  52. Belkaid Y, Tarbell K. Regulatory T cells in the control of host-microorganism interactions. Annu Rev Immunol 2009;27:551-589. https://doi.org/10.1146/annurev.immunol.021908.132723
  53. Belkaid Y, Rouse BT. Natural regulatory T cells in infectious disease. Nat Immunol 2005;6:353-360. https://doi.org/10.1038/ni1181
  54. Peng Y, Laouar Y, Li MO, Green EA, Flavell RA. TGF-beta regulates in vivo expansion of Foxp3-expressing CD4+CD25+ regulatory T cells responsible for protection against diabetes. Proc Natl Acad Sci U S A 2004;101:4572-4577. https://doi.org/10.1073/pnas.0400810101
  55. Mucida D, Park Y, Kim G, Turovskaya O, Scott I, Kronenberg M, Cheroutre H. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 2007;317:256-260. https://doi.org/10.1126/science.1145697
  56. Bonifaz L, Bonnyay D, Mahnke K, Rivera M, Nussenzweig MC, Steinman RM. Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J Exp Med 2002;196:1627-1638. https://doi.org/10.1084/jem.20021598
  57. Mahnke K, Guo M, Lee S, Sepulveda H, Swain SL, Nussenzweig M, Steinman RM. The dendritic cell receptor for endocytosis, DEC-205, can recycle and enhance antigen presentation via major histocompatibility complex class II-positive lysosomal compartments. J Cell Biol 2000;151:673-684. https://doi.org/10.1083/jcb.151.3.673
  58. Clay SL, Bravo-Blas A, Wall DM, MacLeod MK, Milling SW. Regulatory T cells control the dynamic and site-specific polarization of total CD4 T cells following Salmonella infection. Mucosal Immunol 2020;13:946-957. https://doi.org/10.1038/s41385-020-0299-1
  59. Ohta T, Sugiyama M, Hemmi H, Yamazaki C, Okura S, Sasaki I, Fukuda Y, Orimo T, Ishii KJ, Hoshino K, et al. Crucial roles of XCR1-expressing dendritic cells and the XCR1-XCL1 chemokine axis in intestinal immune homeostasis. Sci Rep 2016;6:23505.
  60. Shi C, Hohl TM, Leiner I, Equinda MJ, Fan X, Pamer EG. Ly6G+ neutrophils are dispensable for defense against systemic Listeria monocytogenes infection. J Immunol 2011;187:5293-5298. https://doi.org/10.4049/jimmunol.1101721
  61. Huleatt JW, Pilip I, Kerksiek K, Pamer EG. Intestinal and splenic T cell responses to enteric Listeria monocytogenes infection: distinct repertoires of responding CD8 T lymphocytes. J Immunol 2001;166:4065-4073. https://doi.org/10.4049/jimmunol.166.6.4065
  62. Kursar M, Bonhagen K, Kohler A, Kamradt T, Kaufmann SH, Mittrucker HW. Organ-specific CD4+ T cell response during Listeria monocytogenes infection. J Immunol 2002;168:6382-6387. https://doi.org/10.4049/jimmunol.168.12.6382
  63. Pope C, Kim SK, Marzo A, Masopust D, Williams K, Jiang J, Shen H, Lefrancois L. Organ-specific regulation of the CD8 T cell response to Listeria monocytogenes infection. J Immunol 2001;166:3402-3409. https://doi.org/10.4049/jimmunol.166.5.3402
  64. Collins N, Belkaid Y. Control of immunity via nutritional interventions. Immunity 2022;55:210-223. https://doi.org/10.1016/j.immuni.2022.01.004
  65. Graef FA, Celiberto LS, Allaire JM, Kuan MT, Bosman ES, Crowley SM, Yang H, Chan JH, Stahl M, Yu H, et al. Fasting increases microbiome-based colonization resistance and reduces host inflammatory responses during an enteric bacterial infection. PLoS Pathog 2021;17:e1009719.