DOI QR코드

DOI QR Code

Targeting the Epithelium-Derived Innate Cytokines: From Bench to Bedside

  • Jongho Ham (Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine) ;
  • Jae Woo Shin (Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine) ;
  • Byeong Cheol Ko (Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine) ;
  • Hye Young Kim (Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine)
  • Received : 2021.12.30
  • Accepted : 2022.02.15
  • Published : 2022.02.28

Abstract

When epithelial cells are exposed to potentially threatening external stimuli such as allergens, bacteria, viruses, and helminths, they instantly produce "alarmin" cytokines, namely, IL-33, IL-25, and TSLP. These alarmins alert the immune system about these threats, thereby mobilizing host immune defense mechanisms. Specifically, the alarmins strongly stimulate type-2 immune cells, including eosinophils, mast cells, dendritic cells, type-2 helper T cells, and type-2 innate lymphoid cells. Given that the alarm-raising role of IL-33, IL-25, and TSLP was first detected in allergic and infectious diseases, most studies on alarmins focus on their role in these diseases. However, recent studies suggest that alarmins also have a broad range of effector functions in other pathological conditions, including psoriasis, multiple sclerosis, and cancer. Therefore, this review provides an update on the epithelium-derived cytokines in both allergic and non-allergic diseases. We also review the progress of clinical trials on biological agents that target the alarmins and discuss the therapeutic potential of these agents in non-allergic diseases.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (2019R1A2C2087574 and SRC 2017R1A5A1014560).

References

  1. Larsen SB, Cowley CJ, Fuchs E. Epithelial cells: liaisons of immunity. Curr Opin Immunol 2020;62:45-53. https://doi.org/10.1016/j.coi.2019.11.004
  2. Hammad H, Lambrecht BN. Barrier epithelial cells and the control of type 2 immunity. Immunity 2015;43:29-40. https://doi.org/10.1016/j.immuni.2015.07.007
  3. Oppenheim JJ, Yang D. Alarmins: chemotactic activators of immune responses. Curr Opin Immunol 2005;17:359-365. https://doi.org/10.1016/j.coi.2005.06.002
  4. Fang M, Li Y, Huang K, Qi S, Zhang J, Zgodzinski W, Majewski M, Wallner G, Gozdz S, Macek P, et al. IL33 promotes colon cancer cell stemness via JNK activation and macrophage recruitment. Cancer Res 2017;77:2735-2745. https://doi.org/10.1158/0008-5472.CAN-16-1602
  5. Gamez C, Metcalfe J, Prescott SL, Palmer DJ. Lower cord blood IL-17 and IL-25, but not other epithelial cell-derived cytokines are associated with atopic dermatitis in infancy. Int Arch Allergy Immunol 2021;182:474-478. https://doi.org/10.1159/000512919
  6. Kleinschek MA, Owyang AM, Joyce-Shaikh B, Langrish CL, Chen Y, Gorman DM, Blumenschein WM, McClanahan T, Brombacher F, Hurst SD, et al. IL-25 regulates Th17 function in autoimmune inflammation. J Exp Med 2007;204:161-170. https://doi.org/10.1084/jem.20061738
  7. Li M, Li Y, Liu X, Gao X, Wang Y. IL-33 blockade suppresses the development of experimental autoimmune encephalomyelitis in C57BL/6 mice. J Neuroimmunol 2012;247:25-31. https://doi.org/10.1016/j.jneuroim.2012.03.016
  8. Liu B, Tai Y, Achanta S, Kaelberer MM, Caceres AI, Shao X, Fang J, Jordt SE. IL-33/ST2 signaling excites sensory neurons and mediates itch response in a mouse model of poison ivy contact allergy. Proc Natl Acad Sci U S A 2016;113:E7572-E7579. https://doi.org/10.1073/pnas.1606608113
  9. Papp KA, Leonardi C, Menter A, Ortonne JP, Krueger JG, Kricorian G, Aras G, Li J, Russell CB, Thompson EH, et al. Brodalumab, an anti-interleukin-17-receptor antibody for psoriasis. N Engl J Med 2012;366:1181-1189. https://doi.org/10.1056/NEJMoa1109017
  10. Zeng F, Chen H, Chen L, Mao J, Cai S, Xiao Y, Li J, Shi J, Li B, Xu Y, et al. An autocrine circuit of IL-33 in keratinocytes is involved in the progression of psoriasis. J Invest Dermatol 2021;141:596-606.e7. https://doi.org/10.1016/j.jid.2020.07.027
  11. Kakkar R, Lee RT. The IL-33/ST2 pathway: therapeutic target and novel biomarker. Nat Rev Drug Discov 2008;7:827-840. https://doi.org/10.1038/nrd2660
  12. Moussion C, Ortega N, Girard JP. The IL-1-like cytokine IL-33 is constitutively expressed in the nucleus of endothelial cells and epithelial cells in vivo: a novel 'alarmin'? PLoS One 2008;3:e3331.
  13. Cayrol C, Duval A, Schmitt P, Roga S, Camus M, Stella A, Burlet-Schiltz O, Gonzalez-de-Peredo A, Girard JP. Environmental allergens induce allergic inflammation through proteolytic maturation of IL-33. Nat Immunol 2018;19:375-385. https://doi.org/10.1038/s41590-018-0067-5
  14. Lefrancais E, Roga S, Gautier V, Gonzalez-de-Peredo A, Monsarrat B, Girard JP, Cayrol C. IL-33 is processed into mature bioactive forms by neutrophil elastase and cathepsin G. Proc Natl Acad Sci USA 2012;109:1673-1678. https://doi.org/10.1073/pnas.1115884109
  15. Roy A, Ganesh G, Sippola H, Bolin S, Sawesi O, Dagalv A, Schlenner SM, Feyerabend T, Rodewald HR, Kjellen L, et al. Mast cell chymase degrades the alarmins heat shock protein 70, biglycan, HMGB1, and interleukin-33 (IL-33) and limits danger-induced inflammation. J Biol Chem 2014;289:237-250. https://doi.org/10.1074/jbc.M112.435156
  16. Brusilovsky M, Rochman M, Rochman Y, Caldwell JM, Mack LE, Felton JM, Habel JE, Porollo A, Pasare C, Rothenberg ME. Environmental allergens trigger type 2 inflammation through ripoptosome activation. Nat Immunol 2021;22:1316-1326. https://doi.org/10.1038/s41590-021-01011-2
  17. Cayrol C, Girard JP. Interleukin-33 (IL-33): a nuclear cytokine from the IL-1 family. Immunol Rev 2018;281:154-168.  https://doi.org/10.1111/imr.12619
  18. Cherry WB, Yoon J, Bartemes KR, Iijima K, Kita H. A novel IL-1 family cytokine, IL-33, potently activates human eosinophils. J Allergy Clin Immunol 2008;121:1484-1490. https://doi.org/10.1016/j.jaci.2008.04.005
  19. Martin NT, Martin MU. Interleukin 33 is a guardian of barriers and a local alarmin. Nat Immunol 2016;17:122-131. https://doi.org/10.1038/ni.3370
  20. Tran VG, Cho HR, Kwon B. IL-33 priming enhances peritoneal macrophage activity in response to candida albicans. Immune Netw 2014;14:201-206. https://doi.org/10.4110/in.2014.14.4.201
  21. Lefrancais E, Duval A, Mirey E, Roga S, Espinosa E, Cayrol C, Girard JP. Central domain of IL-33 is cleaved by mast cell proteases for potent activation of group-2 innate lymphoid cells. Proc Natl Acad Sci U S A 2014;111:15502-15507. https://doi.org/10.1073/pnas.1410700111
  22. Travers J, Rochman M, Miracle CE, Habel JE, Brusilovsky M, Caldwell JM, Rymer JK, Rothenberg ME. Chromatin regulates IL-33 release and extracellular cytokine activity. Nat Commun 2018;9:3244.
  23. McGeachy MJ, Cua DJ, Gaffen SL. The IL-17 family of cytokines in health and disease. Immunity 2019;50:892-906. https://doi.org/10.1016/j.immuni.2019.03.021
  24. Borowczyk J, Shutova M, Brembilla NC, Boehncke WH. IL-25 (IL-17E) in epithelial immunology and pathophysiology. J Allergy Clin Immunol 2021;148:40-52. https://doi.org/10.1016/j.jaci.2020.12.628
  25. Fort MM, Cheung J, Yen D, Li J, Zurawski SM, Lo S, Menon S, Clifford T, Hunte B, Lesley R, et al. IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity 2001;15:985-995. https://doi.org/10.1016/S1074-7613(01)00243-6
  26. Kouzaki H, Tojima I, Kita H, Shimizu T. Transcription of interleukin-25 and extracellular release of the protein is regulated by allergen proteases in airway epithelial cells. Am J Respir Cell Mol Biol 2013;49:741-750. https://doi.org/10.1165/rcmb.2012-0304OC
  27. Min HK, Won JY, Kim BM, Lee KA, Lee SJ, Lee SH, Kim HR, Kim KW. Interleukin (IL)-25 suppresses IL-22-induced osteoclastogenesis in rheumatoid arthritis via STAT3 and p38 MAPK/IκBα pathway. Arthritis Res Ther 2020;22:222.
  28. Sonobe Y, Takeuchi H, Kataoka K, Li H, Jin S, Mimuro M, Hashizume Y, Sano Y, Kanda T, Mizuno T, et al. Interleukin-25 expressed by brain capillary endothelial cells maintains blood-brain barrier function in a protein kinase Cepsilon-dependent manner. J Biol Chem 2009;284:31834-31842. https://doi.org/10.1074/jbc.M109.025940
  29. Owyang AM, Zaph C, Wilson EH, Guild KJ, McClanahan T, Miller HR, Cua DJ, Goldschmidt M, Hunter CA, Kastelein RA, et al. Interleukin 25 regulates type 2 cytokine-dependent immunity and limits chronic inflammation in the gastrointestinal tract. J Exp Med 2006;203:843-849. https://doi.org/10.1084/jem.20051496
  30. Tamachi T, Maezawa Y, Ikeda K, Kagami S, Hatano M, Seto Y, Suto A, Suzuki K, Watanabe N, Saito Y. IL-25 enhances allergic airway inflammation by amplifying a TH2 cell-dependent pathway in mice. J Allergy Clin Immunol 2006;118:606-614. https://doi.org/10.1016/j.jaci.2006.04.051
  31. Goswami S, Angkasekwinai P, Shan M, Greenlee KJ, Barranco WT, Polikepahad S, Seryshev A, Song LZ, Redding D, Singh B, et al. Divergent functions for airway epithelial matrix metalloproteinase 7 and retinoic acid in experimental asthma. Nat Immunol 2009;10:496-503. https://doi.org/10.1038/ni.1719
  32. Park LS, Martin U, Garka K, Gliniak B, Di Santo JP, Muller W, Largaespada DA, Copeland NG, Jenkins NA, Farr AG, et al. Cloning of the murine thymic stromal lymphopoietin (TSLP) receptor: formation of a functional heteromeric complex requires interleukin 7 receptor. J Exp Med 2000;192:659-670. https://doi.org/10.1084/jem.192.5.659
  33. Quentmeier H, Drexler HG, Fleckenstein D, Zaborski M, Armstrong A, Sims JE, Lyman SD. Cloning of human thymic stromal lymphopoietin (TSLP) and signaling mechanisms leading to proliferation. Leukemia 2001;15:1286-1292. https://doi.org/10.1038/sj.leu.2402175
  34. Rochman Y, Kashyap M, Robinson GW, Sakamoto K, Gomez-Rodriguez J, Wagner KU, Leonard WJ. Thymic stromal lymphopoietin-mediated STAT5 phosphorylation via kinases JAK1 and JAK2 reveals a key difference from IL-7-induced signaling. Proc Natl Acad Sci U S A 2010;107:19455-19460. https://doi.org/10.1073/pnas.1008271107
  35. Dong H, Hu Y, Liu L, Zou M, Huang C, Luo L, Yu C, Wan X, Zhao H, Chen J, et al. Distinct roles of short and long thymic stromal lymphopoietin isoforms in house dust mite-induced asthmatic airway epithelial barrier disruption. Sci Rep 2016;6:39559.
  36. Fornasa G, Tsilingiri K, Caprioli F, Botti F, Mapelli M, Meller S, Kislat A, Homey B, Di Sabatino A, Sonzogni A, et al. Dichotomy of short and long thymic stromal lymphopoietin isoforms in inflammatory disorders of the bowel and skin. J Allergy Clin Immunol 2015;136:413-422. https://doi.org/10.1016/j.jaci.2015.04.011
  37. Varricchi G, Pecoraro A, Marone G, Criscuolo G, Spadaro G, Genovese A, Marone G. Thymic stromal lymphopoietin isoforms, inflammatory disorders, and cancer. Front Immunol 2018;9:1595.
  38. Soumelis V, Reche PA, Kanzler H, Yuan W, Edward G, Homey B, Gilliet M, Ho S, Antonenko S, Lauerma A, et al. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat Immunol 2002;3:673-680. https://doi.org/10.1038/ni805
  39. Ying S, O'Connor B, Ratoff J, Meng Q, Fang C, Cousins D, Zhang G, Gu S, Gao Z, Shamji B, et al. Expression and cellular provenance of thymic stromal lymphopoietin and chemokines in patients with severe asthma and chronic obstructive pulmonary disease. J Immunol 2008;181:2790-2798. https://doi.org/10.4049/jimmunol.181.4.2790
  40. Nagarkar DR, Poposki JA, Tan BK, Comeau MR, Peters AT, Hulse KE, Suh LA, Norton J, Harris KE, Grammer LC, et al. Thymic stromal lymphopoietin activity is increased in nasal polyps of patients with chronic rhinosinusitis. J Allergy Clin Immunol 2013;132:593-600.e12. https://doi.org/10.1016/j.jaci.2013.04.005
  41. Poposki JA, Klingler AI, Stevens WW, Peters AT, Hulse KE, Grammer LC, Schleimer RP, Welch KC, Smith SS, Sidle DM, et al. Proprotein convertases generate a highly functional heterodimeric form of thymic stromal lymphopoietin in humans. J Allergy Clin Immunol 2017;139:1559-1567.e8. https://doi.org/10.1016/j.jaci.2016.08.040
  42. Busse WW, Lemanske RF Jr. Asthma. N Engl J Med 2001;344:350-362. https://doi.org/10.1056/NEJM200102013440507
  43. Allakhverdi Z, Comeau MR, Jessup HK, Yoon BR, Brewer A, Chartier S, Paquette N, Ziegler SF, Sarfati M, Delespesse G. Thymic stromal lymphopoietin is released by human epithelial cells in response to microbes, trauma, or inflammation and potently activates mast cells. J Exp Med 2007;204:253-258. https://doi.org/10.1084/jem.20062211
  44. Kato A, Favoreto S Jr, Avila PC, Schleimer RP. TLR3- and Th2 cytokine-dependent production of thymic stromal lymphopoietin in human airway epithelial cells. J Immunol 2007;179:1080-1087. https://doi.org/10.4049/jimmunol.179.2.1080
  45. Gudbjartsson DF, Bjornsdottir US, Halapi E, Helgadottir A, Sulem P, Jonsdottir GM, Thorleifsson G, Helgadottir H, Steinthorsdottir V, Stefansson H, et al. Sequence variants affecting eosinophil numbers associate with asthma and myocardial infarction. Nat Genet 2009;41:342-347. https://doi.org/10.1038/ng.323
  46. He JQ, Hallstrand TS, Knight D, Chan-Yeung M, Sandford A, Tripp B, Zamar D, Bosse Y, Kozyrskyj AL, James A, et al. A thymic stromal lymphopoietin gene variant is associated with asthma and airway hyperresponsiveness. J Allergy Clin Immunol 2009;124:222-229. https://doi.org/10.1016/j.jaci.2009.04.018
  47. Moffatt MF, Gut IG, Demenais F, Strachan DP, Bouzigon E, Heath S, von Mutius E, Farrall M, Lathrop M, Cookson WOCM, et al. A large-scale, consortium-based genomewide association study of asthma. N Engl J Med 2010;363:1211-1221. https://doi.org/10.1056/NEJMoa0906312
  48. Corrigan CJ, Wang W, Meng Q, Fang C, Eid G, Caballero MR, Lv Z, An Y, Wang YH, Liu YJ, et al. Allergen-induced expression of IL-25 and IL-25 receptor in atopic asthmatic airways and late-phase cutaneous responses. J Allergy Clin Immunol 2011;128:116-124. https://doi.org/10.1016/j.jaci.2011.03.043
  49. Cheng D, Xue Z, Yi L, Shi H, Zhang K, Huo X, Bonser LR, Zhao J, Xu Y, Erle DJ, et al. Epithelial interleukin-25 is a key mediator in Th2-high, corticosteroid-responsive asthma. Am J Respir Crit Care Med 2014;190:639-648. https://doi.org/10.1164/rccm.201403-0505OC
  50. Li Y, Wang W, Lv Z, Li Y, Chen Y, Huang K, Corrigan CJ, Ying S. Elevated expression of IL-33 and TSLP in the airways of human asthmatics in vivo: a potential biomarker of severe refractory disease. J Immunol 2018;200:2253-2262. https://doi.org/10.4049/jimmunol.1701455
  51. Prefontaine D, Nadigel J, Chouiali F, Audusseau S, Semlali A, Chakir J, Martin JG, Hamid Q. Increased IL-33 expression by epithelial cells in bronchial asthma. J Allergy Clin Immunol 2010;125:752-754. https://doi.org/10.1016/j.jaci.2009.12.935
  52. Ballantyne SJ, Barlow JL, Jolin HE, Nath P, Williams AS, Chung KF, Sturton G, Wong SH, McKenzie AN. Blocking IL-25 prevents airway hyperresponsiveness in allergic asthma. J Allergy Clin Immunol 2007;120:1324-1331. https://doi.org/10.1016/j.jaci.2007.07.051
  53. Kabata H, Flamar AL, Mahlakoiv T, Moriyama S, Rodewald HR, Ziegler SF, Artis D. Targeted deletion of the TSLP receptor reveals cellular mechanisms that promote type 2 airway inflammation. Mucosal Immunol 2020;13:626-636. https://doi.org/10.1038/s41385-020-0266-x
  54. Liu X, Li M, Wu Y, Zhou Y, Zeng L, Huang T. Anti-IL-33 antibody treatment inhibits airway inflammation in a murine model of allergic asthma. Biochem Biophys Res Commun 2009;386:181-185. https://doi.org/10.1016/j.bbrc.2009.06.008
  55. Willebrand R, Voehringer D. IL-33-induced cytokine secretion and survival of mouse eosinophils is promoted by autocrine GM-CSF. PLoS One 2016;11:e0163751.
  56. Salter BMA, Smith SG, Mukherjee M, Plante S, Krisna S, Nusca G, Oliveria JP, Irshad A, Gauvreau GM, Chakir J, et al. Human bronchial epithelial cell-derived factors from severe asthmatic subjects stimulate eosinophil differentiation. Am J Respir Cell Mol Biol 2018;58:99-106. https://doi.org/10.1165/rcmb.2016-0262OC
  57. Iikura M, Suto H, Kajiwara N, Oboki K, Ohno T, Okayama Y, Saito H, Galli SJ, Nakae S. IL-33 can promote survival, adhesion and cytokine production in human mast cells. Lab Invest 2007;87:971-978. https://doi.org/10.1038/labinvest.3700663
  58. Saluja R, Ketelaar ME, Hawro T, Church MK, Maurer M, Nawijn MC. The role of the IL-33/IL-1RL1 axis in mast cell and basophil activation in allergic disorders. Mol Immunol 2015;63:80-85. https://doi.org/10.1016/j.molimm.2014.06.018
  59. Chang YJ, Kim HY, Albacker LA, Baumgarth N, McKenzie AN, Smith DE, Dekruyff RH, Umetsu DT. Innate lymphoid cells mediate influenza-induced airway hyper-reactivity independently of adaptive immunity. Nat Immunol 2011;12:631-638. https://doi.org/10.1038/ni.2045
  60. Bartemes KR, Iijima K, Kobayashi T, Kephart GM, McKenzie AN, Kita H. IL-33-responsive lineage-CD25+ CD44(hi) lymphoid cells mediate innate type 2 immunity and allergic inflammation in the lungs. J Immunol 2012;188:1503-1513. https://doi.org/10.4049/jimmunol.1102832
  61. Woo Y, Jeong D, Chung DH, Kim HY. The roles of innate lymphoid cells in the development of asthma. Immune Netw 2014;14:171-181. https://doi.org/10.4110/in.2014.14.4.171
  62. Kim HY, Chang YJ, Subramanian S, Lee HH, Albacker LA, Matangkasombut P, Savage PB, McKenzie AN, Smith DE, Rottman JB, et al. Innate lymphoid cells responding to IL-33 mediate airway hyperreactivity independently of adaptive immunity. J Allergy Clin Immunol 2012;129:216-227.e1-6. https://doi.org/10.1016/j.jaci.2011.10.036
  63. Wang C, Liu Q, Chen F, Xu W, Zhang C, Xiao W. IL-25 promotes Th2 immunity responses in asthmatic mice via nuocytes activation. PLoS One 2016;11:e0162393.
  64. Toki S, Goleniewska K, Zhang J, Zhou W, Newcomb DC, Zhou B, Kita H, Boyd KL, Peebles RS Jr. TSLP and IL-33 reciprocally promote each other's lung protein expression and ILC2 receptor expression to enhance innate type-2 airway inflammation. Allergy 2020;75:1606-1617. https://doi.org/10.1111/all.14196
  65. Liu S, Verma M, Michalec L, Liu W, Sripada A, Rollins D, Good J, Ito Y, Chu H, Gorska MM, et al. Steroid resistance of airway type 2 innate lymphoid cells from patients with severe asthma: the role of thymic stromal lymphopoietin. J Allergy Clin Immunol 2018;141:257-268.e6. https://doi.org/10.1016/j.jaci.2017.03.032
  66. Kabata H, Moro K, Fukunaga K, Suzuki Y, Miyata J, Masaki K, Betsuyaku T, Koyasu S, Asano K. Thymic stromal lymphopoietin induces corticosteroid resistance in natural helper cells during airway inflammation. Nat Commun 2013;4:2675.
  67. Van Dyken SJ, Nussbaum JC, Lee J, Molofsky AB, Liang HE, Pollack JL, Gate RE, Haliburton GE, Ye CJ, Marson A, et al. A tissue checkpoint regulates type 2 immunity. Nat Immunol 2016;17:1381-1387. https://doi.org/10.1038/ni.3582
  68. Bredo G, Storie J, Shrestha Palikhe N, Davidson C, Adams A, Vliagoftis H, Cameron L. Interleukin-25 initiates Th2 differentiation of human CD4(+) T cells and influences expression of its own receptor. Immun Inflamm Dis 2015;3:455-468. https://doi.org/10.1002/iid3.87
  69. Jang S, Morris S, Lukacs NW. TSLP promotes induction of Th2 differentiation but is not necessary during established allergen-induced pulmonary disease. PLoS One 2013;8:e56433.
  70. Smithgall MD, Comeau MR, Yoon BR, Kaufman D, Armitage R, Smith DE. IL-33 amplifies both Th1- and Th2-type responses through its activity on human basophils, allergen-reactive Th2 cells, iNKT and NK cells. Int Immunol 2008;20:1019-1030. https://doi.org/10.1093/intimm/dxn060
  71. Burzyn D, Benoist C, Mathis D. Regulatory T cells in nonlymphoid tissues. Nat Immunol 2013;14:1007-1013. https://doi.org/10.1038/ni.2683
  72. Sakaguchi S, Vignali DA, Rudensky AY, Niec RE, Waldmann H. The plasticity and stability of regulatory T cells. Nat Rev Immunol 2013;13:461-467. https://doi.org/10.1038/nri3464
  73. Chen CC, Kobayashi T, Iijima K, Hsu FC, Kita H. IL-33 dysregulates regulatory T cells and impairs established immunologic tolerance in the lungs. J Allergy Clin Immunol 2017;140:1351-1363.e7. https://doi.org/10.1016/j.jaci.2017.01.015
  74. Stander S. Atopic dermatitis. N Engl J Med 2021;384:1136-1143. https://doi.org/10.1056/NEJMra2023911
  75. Eichenfield LF, Hanifin JM, Beck LA, Lemanske RF Jr, Sampson HA, Weiss ST, Leung DY. Atopic dermatitis and asthma: parallels in the evolution of treatment. Pediatrics 2003;111:608-616. https://doi.org/10.1542/peds.111.3.608
  76. Jariwala SP, Abrams E, Benson A, Fodeman J, Zheng T. The role of thymic stromal lymphopoietin in the immunopathogenesis of atopic dermatitis. Clin Exp Allergy 2011;41:1515-1520. https://doi.org/10.1111/j.1365-2222.2011.03797.x
  77. Nakamura N, Tamagawa-Mineoka R, Yasuike R, Masuda K, Matsunaka H, Murakami Y, Yokosawa E, Katoh N. Stratum corneum interleukin-33 expressions correlate with the degree of lichenification and pruritus in atopic dermatitis lesions. Clin Immunol 2019;201:1-3. https://doi.org/10.1016/j.clim.2019.02.006
  78. Savinko T, Matikainen S, Saarialho-Kere U, Lehto M, Wang G, Lehtimaki S, Karisola P, Reunala T, Wolff H, Lauerma A, et al. IL-33 and ST2 in atopic dermatitis: expression profiles and modulation by triggering factors. J Invest Dermatol 2012;132:1392-1400. https://doi.org/10.1038/jid.2011.446
  79. Wang YH, Angkasekwinai P, Lu N, Voo KS, Arima K, Hanabuchi S, Hippe A, Corrigan CJ, Dong C, Homey B, et al. IL-25 augments type 2 immune responses by enhancing the expansion and functions of TSLP-DC-activated Th2 memory cells. J Exp Med 2007;204:1837-1847. https://doi.org/10.1084/jem.20070406
  80. Kim BS, Siracusa MC, Saenz SA, Noti M, Monticelli LA, Sonnenberg GF, Hepworth MR, Van Voorhees AS, Comeau MR, Artis D. TSLP elicits IL-33-independent innate lymphoid cell responses to promote skin inflammation. Sci Transl Med 2013;5:170ra16.
  81. Salimi M, Barlow JL, Saunders SP, Xue L, Gutowska-Owsiak D, Wang X, Huang LC, Johnson D, Scanlon ST, McKenzie AN, et al. A role for IL-25 and IL-33-driven type-2 innate lymphoid cells in atopic dermatitis. J Exp Med 2013;210:2939-2950. https://doi.org/10.1084/jem.20130351
  82. Ryu WI, Lee H, Bae HC, Jeon J, Ryu HJ, Kim J, Kim JH, Son JW, Kim J, Imai Y, et al. IL-33 down-regulates CLDN1 expression through the ERK/STAT3 pathway in keratinocytes. J Dermatol Sci 2018;90:313-322. https://doi.org/10.1016/j.jdermsci.2018.02.017
  83. Seltmann J, Roesner LM, von Hesler FW, Wittmann M, Werfel T. IL-33 impacts on the skin barrier by downregulating the expression of filaggrin. J Allergy Clin Immunol 2015;135:1659-1661.e4. https://doi.org/10.1016/j.jaci.2015.01.048
  84. Hvid M, Vestergaard C, Kemp K, Christensen GB, Deleuran B, Deleuran M. IL-25 in atopic dermatitis: a possible link between inflammation and skin barrier dysfunction? J Invest Dermatol 2011;131:150-157. https://doi.org/10.1038/jid.2010.277
  85. Kim JH, Bae HC, Ko NY, Lee SH, Jeong SH, Lee H, Ryu WI, Kye YC, Son SW. Thymic stromal lymphopoietin downregulates filaggrin expression by signal transducer and activator of transcription 3 (STAT3) and extracellular signal-regulated kinase (ERK) phosphorylation in keratinocytes. J Allergy Clin Immunol 2015;136:205-208.e9.  https://doi.org/10.1016/j.jaci.2015.04.026
  86. Leyva-Castillo JM, Galand C, Mashiko S, Bissonnette R, McGurk A, Ziegler SF, Dong C, McKenzie ANJ, Sarfati M, Geha RS. ILC2 activation by keratinocyte-derived IL-25 drives IL-13 production at sites of allergic skin inflammation. J Allergy Clin Immunol 2020;145:1606-1614.e4. https://doi.org/10.1016/j.jaci.2020.02.026
  87. Imai Y, Yasuda K, Sakaguchi Y, Haneda T, Mizutani H, Yoshimoto T, Nakanishi K, Yamanishi K. Skin-specific expression of IL-33 activates group 2 innate lymphoid cells and elicits atopic dermatitis-like inflammation in mice. Proc Natl Acad Sci U S A 2013;110:13921-13926. https://doi.org/10.1073/pnas.1307321110
  88. Yoo J, Omori M, Gyarmati D, Zhou B, Aye T, Brewer A, Comeau MR, Campbell DJ, Ziegler SF. Spontaneous atopic dermatitis in mice expressing an inducible thymic stromal lymphopoietin transgene specifically in the skin. J Exp Med 2005;202:541-549. https://doi.org/10.1084/jem.20041503
  89. Cork MJ, Danby SG, Vasilopoulos Y, Hadgraft J, Lane ME, Moustafa M, Guy RH, Macgowan AL, Tazi-Ahnini R, Ward SJ. Epidermal barrier dysfunction in atopic dermatitis. J Invest Dermatol 2009;129:1892-1908. https://doi.org/10.1038/jid.2009.133
  90. Hirota T, Takahashi A, Kubo M, Tsunoda T, Tomita K, Sakashita M, Yamada T, Fujieda S, Tanaka S, Doi S, et al. Genome-wide association study identifies eight new susceptibility loci for atopic dermatitis in the Japanese population. Nat Genet 2012;44:1222-1226. https://doi.org/10.1038/ng.2438
  91. Paternoster L, Standl M, Chen CM, Ramasamy A, Bonnelykke K, Duijts L, Ferreira MA, Alves AC, Thyssen JP, Albrecht E, et al. Meta-analysis of genome-wide association studies identifies three new risk loci for atopic dermatitis. Nat Genet 2011;44:187-192. https://doi.org/10.1038/ng.1017
  92. Paternoster L, Standl M, Waage J, Baurecht H, Hotze M, Strachan DP, Curtin JA, Bonnelykke K, Tian C, Takahashi A, et al. Multi-ancestry genome-wide association study of 21,000 cases and 95,000 controls identifies new risk loci for atopic dermatitis. Nat Genet 2015;47:1449-1456. https://doi.org/10.1038/ng.3424
  93. Schleimer RP, Berdnikovs S. Etiology of epithelial barrier dysfunction in patients with type 2 inflammatory diseases. J Allergy Clin Immunol 2017;139:1752-1761. https://doi.org/10.1016/j.jaci.2017.04.010
  94. Mashiko S, Mehta H, Bissonnette R, Sarfati M. Increased frequencies of basophils, type 2 innate lymphoid cells and Th2 cells in skin of patients with atopic dermatitis but not psoriasis. J Dermatol Sci 2017;88:167-174. https://doi.org/10.1016/j.jdermsci.2017.07.003
  95. Wilson SR, The L, Batia LM, Beattie K, Katibah GE, McClain SP, Pellegrino M, Estandian DM, Bautista DM. The epithelial cell-derived atopic dermatitis cytokine TSLP activates neurons to induce itch. Cell 2013;155:285-295. https://doi.org/10.1016/j.cell.2013.08.057
  96. Hashimoto Y, Arai I, Nakanishi Y, Sakurai T, Nakamura A, Nakaike S. Scratching of their skin by NC/Nga mice leads to development of dermatitis. Life Sci 2004;76:783-794. https://doi.org/10.1016/j.lfs.2004.07.022
  97. Krueger JG, Bowcock A. Psoriasis pathophysiology: current concepts of pathogenesis. Ann Rheum Dis 2005;64 Suppl 2:ii30-ii36. https://doi.org/10.1136/ard.2004.031120
  98. Chiang CC, Cheng WJ, Korinek M, Lin CY, Hwang TL. Neutrophils in Psoriasis. Front Immunol 2019;10:2376.
  99. Li B, Huang L, Lv P, Li X, Liu G, Chen Y, Wang Z, Qian X, Shen Y, Li Y, et al. The role of Th17 cells in psoriasis. Immunol Res 2020;68:296-309. https://doi.org/10.1007/s12026-020-09149-1
  100. Elloso MM, Gomez-Angelats M, Fourie AM. Targeting the Th17 pathway in psoriasis. J Leukoc Biol 2012;92:1187-1197. https://doi.org/10.1189/jlb.0212101
  101. Lowes MA, Suarez-Farinas M, Krueger JG. Immunology of psoriasis. Annu Rev Immunol 2014;32:227-255. https://doi.org/10.1146/annurev-immunol-032713-120225
  102. Mitsui A, Tada Y, Takahashi T, Shibata S, Kamata M, Miyagaki T, Fujita H, Sugaya M, Kadono T, Sato S, et al. Serum IL-33 levels are increased in patients with psoriasis. Clin Exp Dermatol 2016;41:183-189. https://doi.org/10.1111/ced.12670
  103. Suwarsa O, Dharmadji HP, Sutedja E, Herlina L, Sori PR, Hindritiani R, Dwiyana RF, Gunawan H. Skin tissue expression and serum level of thymic stromal lymphopoietin in patients with psoriasis vulgaris. Dermatol Rep 2019;11:8006.
  104. Duan Y, Dong Y, Hu H, Wang Q, Guo S, Fu D, Song X, Kalvakolanu DV, Tian Z. IL-33 contributes to disease severity in Psoriasis-like models of mouse. Cytokine 2019;119:159-167. https://doi.org/10.1016/j.cyto.2019.02.019
  105. Hueber AJ, Alves-Filho JC, Asquith DL, Michels C, Millar NL, Reilly JH, Graham GJ, Liew FY, Miller AM, McInnes IB. IL-33 induces skin inflammation with mast cell and neutrophil activation. Eur J Immunol 2011;41:2229-2237. https://doi.org/10.1002/eji.201041360
  106. Suto H, Nambu A, Morita H, Yamaguchi S, Numata T, Yoshizaki T, Shimura E, Arae K, Asada Y, Motomura K, et al. IL-25 enhances TH17 cell-mediated contact dermatitis by promoting IL-1β production by dermal dendritic cells. J Allergy Clin Immunol 2018;142:1500-1509.e10. https://doi.org/10.1016/j.jaci.2017.12.1007
  107. Volpe E, Pattarini L, Martinez-Cingolani C, Meller S, Donnadieu MH, Bogiatzi SI, Fernandez MI, Touzot M, Bichet JC, Reyal F, et al. Thymic stromal lymphopoietin links keratinocytes and dendritic cell-derived IL-23 in patients with psoriasis. J Allergy Clin Immunol 2014;134:373-381. https://doi.org/10.1016/j.jaci.2014.04.022
  108. Kubo T, Kamekura R, Kumagai A, Kawata K, Yamashita K, Mitsuhashi Y, Kojima T, Sugimoto K, Yoneta A, Sumikawa Y, et al. ΔNp63 controls a TLR3-mediated mechanism that abundantly provides thymic stromal lymphopoietin in atopic dermatitis. PLoS One 2014;9:e105498.
  109. Gago-Lopez N, Mellor LF, Megias D, Martin-Serrano G, Izeta A, Jimenez F, Wagner EF. Role of bulge epidermal stem cells and TSLP signaling in psoriasis. EMBO Mol Med 2019;11:e10697.
  110. Trapp BD, Nave KA. Multiple sclerosis: an immune or neurodegenerative disorder? Annu Rev Neurosci 2008;31:247-269. https://doi.org/10.1146/annurev.neuro.30.051606.094313
  111. Pichery M, Mirey E, Mercier P, Lefrancais E, Dujardin A, Ortega N, Girard JP. Endogenous IL-33 is highly expressed in mouse epithelial barrier tissues, lymphoid organs, brain, embryos, and inflamed tissues: in situ analysis using a novel Il-33-LacZ gene trap reporter strain. J Immunol 2012;188:3488-3495. https://doi.org/10.4049/jimmunol.1101977
  112. Fairlie-Clarke K, Barbour M, Wilson C, Hridi SU, Allan D, Jiang HR. Expression and function of IL-33/ST2 axis in the central nervous system under normal and diseased conditions. Front Immunol 2018;9:2596.
  113. Allan D, Fairlie-Clarke KJ, Elliott C, Schuh C, Barnett SC, Lassmann H, Linnington C, Jiang HR. Role of IL-33 and ST2 signalling pathway in multiple sclerosis: expression by oligodendrocytes and inhibition of myelination in central nervous system. Acta Neuropathol Commun 2016;4:75.
  114. Christophi GP, Gruber RC, Panos M, Christophi RL, Jubelt B, Massa PT. Interleukin-33 upregulation in peripheral leukocytes and CNS of multiple sclerosis patients. Clin Immunol 2012;142:308-319. https://doi.org/10.1016/j.clim.2011.11.007
  115. Jiang HR, Milovanovic M, Allan D, Niedbala W, Besnard AG, Fukada SY, Alves-Filho JC, Togbe D, Goodyear CS, Linington C, et al. IL-33 attenuates EAE by suppressing IL-17 and IFN-γ production and inducing alternatively activated macrophages. Eur J Immunol 2012;42:1804-1814. https://doi.org/10.1002/eji.201141947
  116. Mado H, Adamczyk-Sowa M, Bartman W, Wierzbicki K, Tadeusiak B, Sowa P. Plasma Interleukin-33 level in relapsing-remitting multiple sclerosis. Is it negatively correlated with central nervous system lesions in patients with mild disability? Clin Neurol Neurosurg 2021;206:106700.
  117. Jafarzadeh A, Mahdavi R, Jamali M, Hajghani H, Nemati M, Ebrahimi HA. Increased concentrations of interleukin-33 in the serum and cerebrospinal fluid of patients with multiple sclerosis. Oman Med J 2016;31:40-45. https://doi.org/10.5001/omj.2016.08
  118. Sung HY, Chen WY, Huang HT, Wang CY, Chang SB, Tzeng SF. Down-regulation of interleukin-33 expression in oligodendrocyte precursor cells impairs oligodendrocyte lineage progression. J Neurochem 2019;150:691-708. https://doi.org/10.1111/jnc.14788
  119. Milovanovic M, Volarevic V, Ljujic B, Radosavljevic G, Jovanovic I, Arsenijevic N, Lukic ML. Deletion of IL-33R (ST2) abrogates resistance to EAE in BALB/C mice by enhancing polarization of APC to inflammatory phenotype. PLoS One 2012;7:e45225. 
  120. Javan MR, Seyfizadeh N, Aslani S, Farhoodi M, Babaloo Z. Molecular analysis of interleukin-25 exons 1 and 2 and its serum levels in Iranian patients with multiple sclerosis. Am J Clin Exp Immunol 2014;3:91-96.
  121. Turner DA, Haile Y, Giuliani F. IL-25 prevents T cell-mediated neurotoxicity by decreasing LFA-1 expression. J Neuroimmunol 2013;265:11-19. https://doi.org/10.1016/j.jneuroim.2013.10.006
  122. Maiorino C, Khorooshi R, Ruffini F, Lobner M, Bergami A, Garzetti L, Martino G, Owens T, Furlan R. Lentiviral-mediated administration of IL-25 in the CNS induces alternative activation of microglia. Gene Ther 2013;20:487-496. https://doi.org/10.1038/gt.2012.58
  123. Eckhardt J, Dobbeler M, Konig C, Kuczera K, Kuhnt C, Ostalecki C, Zinser E, Mak TW, Steinkasserer A, Lechmann M. Thymic stromal lymphopoietin deficiency attenuates experimental autoimmune encephalomyelitis. Clin Exp Immunol 2015;181:51-64. https://doi.org/10.1111/cei.12621
  124. Yu X, Lv J, Wu J, Chen Y, Chen F, Wang L. The autoimmune encephalitis-related cytokine TSLP in the brain primes neuroinflammation by activating the JAK2-NLRP3 axis. Clin Exp Immunol 2021;207:113-122. https://doi.org/10.1093/cei/uxab023
  125. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011;144:646-674. https://doi.org/10.1016/j.cell.2011.02.013
  126. Zhang J, Wang P, Ji W, Ding Y, Lu X. Overexpression of interleukin-33 is associated with poor prognosis of patients with glioma. Int J Neurosci 2017;127:210-217. https://doi.org/10.1080/00207454.2016.1175441
  127. Chen SF, Nieh S, Jao SW, Wu MZ, Liu CL, Chang YC, Lin YS. The paracrine effect of cancer-associated fibroblast-induced interleukin-33 regulates the invasiveness of head and neck squamous cell carcinoma. J Pathol 2013;231:180-189. https://doi.org/10.1002/path.4226
  128. Sun P, Ben Q, Tu S, Dong W, Qi X, Wu Y. Serum interleukin-33 levels in patients with gastric cancer. Dig Dis Sci 2011;56:3596-3601. https://doi.org/10.1007/s10620-011-1760-5
  129. Liu X, Zhu L, Lu X, Bian H, Wu X, Yang W, Qin Q. IL-33/ST2 pathway contributes to metastasis of human colorectal cancer. Biochem Biophys Res Commun 2014;453:486-492. https://doi.org/10.1016/j.bbrc.2014.09.106
  130. Zhang P, Liu XK, Chu Z, Ye JC, Li KL, Zhuang WL, Yang DJ, Jiang YF. Detection of interleukin-33 in serum and carcinoma tissue from patients with hepatocellular carcinoma and its clinical implications. J Int Med Res 2012;40:1654-1661. https://doi.org/10.1177/030006051204000504
  131. Santulli P, Even M, Chouzenoux S, Millischer AE, Borghese B, de Ziegler D, Batteux F, Chapron C. Profibrotic interleukin-33 is correlated with uterine leiomyoma tumour burden. Hum Reprod 2013;28:2126-2133. https://doi.org/10.1093/humrep/det238
  132. Hu LA, Fu Y, Zhang DN, Zhang J. Serum IL-33 as a diagnostic and prognostic marker in non- small cell lung cancer. Asian Pac J Cancer Prev 2013;14:2563-2566. https://doi.org/10.7314/APJCP.2013.14.4.2563
  133. Yang ZP, Ling DY, Xie YH, Wu WX, Li JR, Jiang J, Zheng JL, Fan YH, Zhang Y. The association of serum IL-33 and sST2 with breast cancer. Dis Markers 2015;2015:516895.
  134. Jovanovic IP, Pejnovic NN, Radosavljevic GD, Pantic JM, Milovanovic MZ, Arsenijevic NN, Lukic ML. Interleukin-33/ST2 axis promotes breast cancer growth and metastases by facilitating intratumoral accumulation of immunosuppressive and innate lymphoid cells. Int J Cancer 2014;134:1669-1682. https://doi.org/10.1002/ijc.28481
  135. Gao X, Wang X, Yang Q, Zhao X, Wen W, Li G, Lu J, Qin W, Qi Y, Xie F, et al. Tumoral expression of IL-33 inhibits tumor growth and modifies the tumor microenvironment through CD8+ T and NK cells. J Immunol 2015;194:438-445. https://doi.org/10.4049/jimmunol.1401344
  136. Gao K, Li X, Zhang L, Bai L, Dong W, Gao K, Shi G, Xia X, Wu L, Zhang L. Transgenic expression of IL-33 activates CD8(+) T cells and NK cells and inhibits tumor growth and metastasis in mice. Cancer Lett 2013;335:463-471. https://doi.org/10.1016/j.canlet.2013.03.002
  137. Qin L, Dominguez D, Chen S, Fan J, Long A, Zhang M, Fang D, Zhang Y, Kuzel TM, Zhang B. Exogenous IL-33 overcomes T cell tolerance in murine acute myeloid leukemia. Oncotarget 2016;7:61069-61080.  https://doi.org/10.18632/oncotarget.11179
  138. Dominguez D, Ye C, Geng Z, Chen S, Fan J, Qin L, Long A, Wang L, Zhang Z, Zhang Y, et al. Exogenous IL-33 restores dendritic cell activation and maturation in established cancer. J Immunol 2017;198:1365-1375. https://doi.org/10.4049/jimmunol.1501399
  139. Chen J, Zhao Y, Jiang Y, Gao S, Wang Y, Wang D, Wang A, Yi H, Gu R, Yi Q, et al. Interleukin-33 contributes to the induction of Th9 cells and antitumor efficacy by dectin-1-activated dendritic cells. Front Immunol 2018;9:1787.
  140. Moral JA, Leung J, Rojas LA, Ruan J, Zhao J, Sethna Z, Ramnarain A, Gasmi B, Gururajan M, Redmond D, et al. ILC2s amplify PD-1 blockade by activating tissue-specific cancer immunity. Nature 2020;579:130-135. https://doi.org/10.1038/s41586-020-2015-4
  141. Ikutani M, Yanagibashi T, Ogasawara M, Tsuneyama K, Yamamoto S, Hattori Y, Kouro T, Itakura A, Nagai Y, Takaki S, et al. Identification of innate IL-5-producing cells and their role in lung eosinophil regulation and antitumor immunity. J Immunol 2012;188:703-713. https://doi.org/10.4049/jimmunol.1101270
  142. Wagner M, Ealey KN, Tetsu H, Kiniwa T, Motomura Y, Moro K, Koyasu S, et al. Tumor-derived lactic acid contributes to the paucity of intratumoral ILC2s. Cell Rep 2020;30:2743-2757.e5. https://doi.org/10.1016/j.celrep.2020.01.103
  143. Jiang Z, Chen J, Du X, Cheng H, Wang X, Dong C. IL-25 blockade inhibits metastasis in breast cancer. Protein Cell 2017;8:191-201. https://doi.org/10.1007/s13238-016-0345-7
  144. Nakajima R, Miyagaki T, Hirakawa M, Oka T, Takahashi N, Suga H, Yoshizaki A, Fujita H, Asano Y, Sugaya M, et al. Interleukin-25 is involved in cutaneous T-cell lymphoma progression by establishing a T helper 2-dominant microenvironment. Br J Dermatol 2018;178:1373-1382. https://doi.org/10.1111/bjd.16237
  145. Ferretti E, Di Carlo E, Ognio E, Fraternali-Orcioni G, Corcione A, Belmonte B, Ravetti JL, Tripodo C, Ribatti D, Pistoia V. IL-25 dampens the growth of human germinal center-derived B-cell non Hodgkin Lymphoma by curtailing neoangiogenesis. OncoImmunology 2017;7:e1397249.
  146. Furuta S, Jeng YM, Zhou L, Huang L, Kuhn I, Bissell MJ, Lee WH. IL-25 causes apoptosis of IL-25R-expressing breast cancer cells without toxicity to nonmalignant cells. Sci Transl Med 2011;3:78ra31.
  147. Ragonnaud E, Moritoh K, Bodogai M, Gusev F, Garaud S, Chen C, Wang X, Baljinnyam T, Becker KG, Maul RW, et al. Tumor-derived thymic stromal lymphopoietin expands bone marrow b-cell precursors in circulation to support metastasis. Cancer Res 2019;79:5826-5838. https://doi.org/10.1158/0008-5472.CAN-19-1058
  148. Xie F, Meng YH, Liu LB, Chang KK, Li H, Li MQ, Li DJ. Cervical carcinoma cells stimulate the angiogenesis through TSLP promoting growth and activation of vascular endothelial cells. Am J Reprod Immunol 2013;70:69-79. https://doi.org/10.1111/aji.12104
  149. Xie F, Liu LB, Shang WQ, Chang KK, Meng YH, Mei J, Yu JJ, Li DJ, Li MQ. The infiltration and functional regulation of eosinophils induced by TSLP promote the proliferation of cervical cancer cell. Cancer Lett 2015;364:106-117. https://doi.org/10.1016/j.canlet.2015.04.029
  150. Takahashi N, Sugaya M, Suga H, Oka T, Kawaguchi M, Miyagaki T, Fujita H, Sato S. Thymic stromal chemokine TSLP acts through Th2 cytokine production to induce cutaneous T-cell lymphoma. Cancer Res 2016;76:6241-6252. https://doi.org/10.1158/0008-5472.CAN-16-0992
  151. De Monte L, Reni M, Tassi E, Clavenna D, Papa I, Recalde H, Braga M, Di Carlo V, Doglioni C, Protti MP. Intratumor T helper type 2 cell infiltrate correlates with cancer-associated fibroblast thymic stromal lymphopoietin production and reduced survival in pancreatic cancer. J Exp Med 2011;208:469-478. https://doi.org/10.1084/jem.20101876
  152. Demehri S, Cunningham TJ, Manivasagam S, Ngo KH, Moradi Tuchayi S, Reddy R, Meyers MA, DeNardo DG, Yokoyama WM. Thymic stromal lymphopoietin blocks early stages of breast carcinogenesis. J Clin Invest 2016;126:1458-1470. https://doi.org/10.1172/JCI83724
  153. Yue W, Lin Y, Yang X, Li B, Liu J, He R. Thymic stromal lymphopoietin (TSLP) inhibits human colon tumor growth by promoting apoptosis of tumor cells. Oncotarget 2016;7:16840-16854. https://doi.org/10.18632/oncotarget.7614
  154. A first-in-human, double blind, single dose study in healthy subjects and subjects with mild atopic asthma [Internet]. Available at https://clinicaltrials.gov/ct2/show/NCT01928368 [accessed on 27 December, 2021].
  155. A study to evaluate the safety, tolerability, pharmacokinetics, and pharmacodynamics of AMG 282 in healthy subjects and subjects with chronic rhinosinusitis with nasal polyps [Internet]. Available at https://clinicaltrials.gov/ct2/show/NCT02170337 [accessed on 27 December, 2021].
  156. A study to assess the efficacy and safety of MSTT1041A in participants with uncontrolled severe asthma [Internet]. Available at https://clinicaltrials.gov/ct2/show/NCT02918019 [accessed on 27 December, 2021].
  157. A study to assess the efficacy and safety of MSTT1041A in participants with moderate to severe atopic dermatitis [Internet]. Available at https://clinicaltrials.gov/ct2/show/NCT03747575 [accessed on 27 December, 2021].
  158. Anti-ST2 (MSTT1041A) in COPD (COPD-ST2OP) [Internet]. Available at https://clinicaltrials.gov/ct2/show/NCT03615040 [accessed on 27 December, 2021].
  159. A study to evaluate the efficacy and safety of astegolimab in participants with chronic obstructive pulmonary disease [Internet]. Available at https://clinicaltrials.gov/ct2/show/NCT05037929 [accessed on 27 December, 2021].
  160. A study investigating the efficacy, safety, and PK profile of ANB020 administered to adult subjects with moderate-to-severe AD (ATLAS) [Internet]. Available at https://clinicaltrials.gov/ct2/show/NCT03533751 [accessed on 27 December, 2021].
  161. Proof of concept study to investigate ANB020 activity in adult patients with severe eosinophilic asthma [Internet]. Available at https://clinicaltrials.gov/ct2/show/NCT03469934 [accessed on 27 December, 2021].
  162. Etokimab in adult patients with chronic rhinosinusitis with nasal polyps (CRSwNP) [Internet]. Available at https://clinicaltrials.gov/ct2/show/NCT03614923 [accessed on 27 December, 2021].
  163. Placebo-controlled study to investigate ANB020 activity in adult patients with peanut allergy [Internet]. Available at https://clinicaltrials.gov/ct2/show/NCT02920021 [accessed on 27 December, 2021].
  164. A study to evaluate the safety and tolerability, pharmacokinetics (PK) and pharmacodynamics (PD) of Melrilimab (GSK3772847) in healthy participants [Internet]. Available at https://clinicaltrials.gov/ct2/show/NCT04366349 [accessed on 27 December, 2021].
  165. Efficacy and safety study of GSK3772847 in subjects with moderately severe asthma [Internet]. Available at https://clinicaltrials.gov/ct2/show/NCT03207243 [accessed on 27 December, 2021].
  166. Study of REGN3500 and dupilumab in patients with asthma [Internet]. Available at https://clinicaltrials.gov/ct2/show/NCT03112577 [accessed on 27 December, 2021].
  167. Study of safety, tolerability, and pharmacokinetics of multiple ascending doses of REGN3500 in adults with moderate asthma [Internet]. Available at https://clinicaltrials.gov/ct2/show/NCT02999711 [accessed on 27 December, 2021].
  168. Evaluation of SAR440340 and as combination therapy with dupilumab in moderate-to-severe asthma participants [Internet]. Available at https://clinicaltrials.gov/ct2/show/NCT03387852 [accessed on 27 December, 2021].
  169. Efficacy, safety, and pharmacokinetic profiles of REGN3500 administered to adult patients with moderate-to-severe atopic dermatitis [Internet]. Available at https://clinicaltrials.gov/ct2/show/NCT03738423 [accessed on 27 December, 2021].
  170. Efficacy and safety of REGN3500 monotherapy and combination of REGN3500 plus dupilumab in adult patients with moderate-to-severe atopic dermatitis [Internet]. Available at https://clinicaltrials.gov/ct2/show/NCT03736967 [accessed on 27 December, 2021].
  171. Proof-of-concept study to assess the efficacy, safety and tolerability of SAR440340 (Anti-IL-33 mAb) in patients with moderate-to-severe chronic obstructive pulmonary disease (COPD) [Internet]. Available at https://clinicaltrials.gov/ct2/show/NCT03546907 [accessed on 27 December, 2021].
  172. Study to assess the efficacy, safety, and tolerability of SAR440340/REGN3500/Itepekimab in chronic obstructive pulmonary disease (COPD) (AERIFY-1) [Internet]. Available at https://clinicaltrials.gov/ct2/show/NCT04701983 [accessed on 27 December, 2021].
  173. Study to assess the efficacy, safety, and tolerability of SAR440340/REGN3500/Itepekimab in chronic obstructive pulmonary disease (COPD) (AERIFY-2) [Internet]. Available at https://clinicaltrials.gov/ct2/show/NCT04751487 [accessed on 27 December, 2021].
  174. Safety and tolerability of MEDI3506 in healthy participants, in participants with COPD and healthy Japanese participants [Internet]. Available at https://clinicaltrials.gov/ct2/show/NCT03096795 [accessed on 27 December, 2021].
  175. Study to assess the efficacy and safety of MEDI3506 in adults with uncontrolled moderate-to-severe asthma (FRONTIER-3) [Internet]. Available at https://clinicaltrials.gov/ct2/show/NCT04570657 [accessed on 27 December, 2021].
  176. Efficacy and safety of MEDI3506 in adult subjects with atopic dermatitis [Internet]. Available at https://clinicaltrials.gov/ct2/show/NCT04212169 [accessed on 27 December, 2021]. 
  177. A phase II, randomized, double-blind, placebo-controlled study to assess MEDI3506 in participants with COPD and chronic bronchitis (FRONTIER-4) [Internet]. Available at https://clinicaltrials.gov/ct2/show/NCT04631016 [accessed on 27 December, 2021]. 
  178. A study to evaluate the pharmacokinetics of MEDI9929 (AMG 157) in adolescents with mild to moderate asthma [Internet]. Available at https://clinicaltrials.gov/ct2/show/NCT02512900 [accessed on 27 December, 2021]. 
  179. Study to evaluate the pharmacokinetics of tezepelumab in children with asthma (TRAILHEAD) [Internet]. Available at https://clinicaltrials.gov/ct2/show/NCT04673630 [accessed on 27 December, 2021]. 
  180. Double-blind, multiple dose study in subjects with mild atopic asthma [Internet]. Available at https://clinicaltrials.gov/ct2/show/NCT01405963 [accessed on 27 December, 2021]. 
  181. Safety study of AMG 157 in healthy subjects and subjects with atopic dermatitis [Internet]. Available at https://clinicaltrials.gov/ct2/show/NCT00757042 [accessed on 27 December, 2021]. 
  182. Study to evaluate the efficacy and safety of MEDI9929 (AMG 157) in adult subjects with inadequately controlled, severe asthma [Internet]. Available at https://clinicaltrials.gov/ct2/show/NCT02054130 [accessed on 27 December, 2021]. 
  183. Effects of anti-TSLP in patients with asthma (UPSTREAM) [Internet]. Available at https://clinicaltrials.gov/ct2/show/NCT02698501 [accessed on 27 December, 2021]. 
  184. Study to evaluate tezepelumab on airway inflammation in adults with uncontrolled asthma (CASCADE) (CASCADE) [Internet]. Available at https://clinicaltrials.gov/ct2/show/NCT03688074 [accessed on 27 December, 2021]. 
  185. Phase 2a study to evaluate the efficacy and safety of MEDI9929 in adults with atopic dermatitis (ALLEVIAD) [Internet]. Available at https://clinicaltrials.gov/ct2/show/NCT02525094 [accessed on 27 December, 2021]. 
  186. Anti-TSLP (AMG 157) plus antigen-specific immunotherapy for induction of tolerance in individuals with cat allergy [Internet]. Available at https://clinicaltrials.gov/ct2/show/NCT02237196 [accessed on 27 December 2021]. 
  187. Study to evaluate tezepelumab in adults with chronic spontaneous urticaria (INCEPTION) [Internet]. Available at https://clinicaltrials.gov/ct2/show/NCT04833855 [accessed on 27 December 2021]. 
  188. Tezepelumab COPD exacerbation study (COURSE) [Internet]. Available at https://clinicaltrials.gov/ct2/show/NCT04039113 [accessed on 27 December, 2021]. 
  189. Study to evaluate tezepelumab in adults & adolescents with severe uncontrolled asthma (NAVIGATOR) [Internet]. Available at https://clinicaltrials.gov/ct2/show/NCT03347279 [accessed on 27 December, 2021]. 
  190. Study to evaluate the efficacy and safety of tezepelumab in reducing oral corticosteroid use in adults with oral corticosteroid dependent asthma (SOURCE) [Internet]. Available at https://clinicaltrials.gov/ct2/show/NCT03406078 [accessed on 27 December, 2021]. 
  191. Long-term safety of tezepelumab in japanese subjects with inadequately controlled severe asthma (NOZOMI) [Internet]. Available at https://clinicaltrials.gov/ct2/show/NCT04048343 [accessed on 27 December, 2021]. 
  192. Extension study to evaluate the safety and tolerability of tezepelumab in adults and adolescents with severe, uncontrolled asthma (DESTINATION) [Internet]. Available at https://clinicaltrials.gov/ct2/show/NCT03706079 [accessed on 27 December, 2021]. 
  193. Study to evaluate tezepelumab in adults with severe uncontrolled asthma (DIRECTION) [Internet]. Available at https://clinicaltrials.gov/ct2/show/NCT03927157 [accessed on 27 December, 2021]. 
  194. Efficacy and safety of tezepelumab in participants with severe chronic rhinosinusitis with nasal polyposis (WAYPOINT) [Internet]. Available at https://clinicaltrials.gov/ct2/show/NCT04851964 [accessed on 27 December, 2021]. 
  195. A bronchoprovocation study to assess the safety, tolerability, pharmacokinetics and pharmacodynamics of CSJ117 in adult subjects with mild atopic asthma [Internet]. Available at https://clinicaltrials.gov/ct2/show/NCT03138811 [accessed on 27 December, 2021]. 
  196. Study of efficacy and safety of CSJ117 in patients with severe uncontrolled asthma [Internet]. Available at https://clinicaltrials.gov/ct2/show/NCT04410523 [accessed on 27 December, 2021]. 
  197. Study of safety of CSJ117 in participants with moderate to severe uncontrolled asthma [Internet]. Available at https://clinicaltrials.gov/ct2/show/NCT04946318 [accessed on 27 December, 2021]. 
  198. Study of effect of CSJ117 on symptoms, pharmacodynamics and safety in patients with COPD [Internet]. Available at https://clinicaltrials.gov/ct2/show/NCT04882124 [accessed on 27 December, 2021]. 
  199. Kelsen SG, Agache IO, Soong W, Israel E, Chupp GL, Cheung DS, Theess W, Yang X, Staton TL, Choy DF, et al. Astegolimab (anti-ST2) efficacy and safety in adults with severe asthma: a randomized clinical trial. J Allergy Clin Immunol 2021;148:790-798. https://doi.org/10.1016/j.jaci.2021.03.044
  200. Rabe KF, Celli BR, Wechsler ME, Abdulai RM, Luo X, Boomsma MM, Staudinger H, Horowitz JE, Baras A, Ferreira MA, et al. Safety and efficacy of itepekimab in patients with moderate-to-severe COPD: a genetic association study and randomised, double-blind, phase 2a trial. Lancet Respir Med 2021;9:1288-1298. https://doi.org/10.1016/S2213-2600(21)00167-3
  201. Emson C, Corren J, Salapa K, Hellqvist A, Parnes JR, Colice G. Efficacy of tezepelumab in patients with severe, uncontrolled asthma with and without nasal polyposis: a post hoc analysis of the phase 2b PATHWAY study. J Asthma Allergy 2021;14:91-99. https://doi.org/10.2147/JAA.S288260
  202. Menzies-Gow A, Corren J, Bourdin A, Chupp G, Israel E, Wechsler ME, Brightling CE, Griffiths JM, Hellqvist A, Bowen K, et al. Tezepelumab in adults and adolescents with severe, uncontrolled asthma. N Engl J Med 2021;384:1800-1809. https://doi.org/10.1056/NEJMoa2034975
  203. Simpson EL, Parnes JR, She D, Crouch S, Rees W, Mo M, van der Merwe R. Tezepelumab, an anti-thymic stromal lymphopoietin monoclonal antibody, in the treatment of moderate to severe atopic dermatitis: a randomized phase 2a clinical trial. J Am Acad Dermatol 2019;80:1013-1021. https://doi.org/10.1016/j.jaad.2018.11.059
  204. Gauvreau G, Hohlfeld J, Boulet LP, Cockcroft D, Davis B, Fitzgerald JM, Korn S, Kornmann O, Leigh R, Mayers I, et al.. Late breaking abstract - efficacy of CSJ117 on allergen-induced asthmatic responses in mild atopic asthma patients. Eur Respir J 2020;56:3690.