DOI QR코드

DOI QR Code

Development of Bispecific Antibody for Cancer Immunotherapy: Focus on T Cell Engaging Antibody

  • Dain Moon (Department of Life Sciences, Pohang University of Science and Technology (POSTECH)) ;
  • Nara Tae (Global/Gangwon Innovative Biologics Regional Leading Research Center (GIB-RLRC), Kangwon National University) ;
  • Yunji Park (Pohang University of Science and Technology (POSTECH) Biotech Center, POSTECH) ;
  • Seung-Woo Lee (Department of Life Sciences, Pohang University of Science and Technology (POSTECH)) ;
  • Dae Hee Kim (College of Pharmacy, Kangwon National University)
  • Received : 2022.01.21
  • Accepted : 2022.02.03
  • Published : 2022.02.28

Abstract

In the era of immunotherapeutic control of cancers, many advances in biotechnology, especially in Ab engineering, have provided multiple new candidates as therapeutic immuno-oncology modalities. Bispecific Abs (BsAbs) that recognize 2 different antigens in one molecule are promising drug candidates and have inspired an upsurge in research in both academia and the pharmaceutical industry. Among several BsAbs, T cell engaging BsAb (TCEB), a new class of therapeutic agents designed to simultaneously bind to T cells and tumor cells via tumor cell specific antigens in immunotherapy, is the most promising BsAb. Herein, we are providing an overview of the current status of the development of TCEBs. The diverse formats and characteristics of TCEBs, in addition to the functional mechanisms of BsAbs are discussed. Several aspects of a new TCEB-Blinatumomab-are reviewed, including the current clinical data, challenges of patient treatment, drawbacks regarding toxicities, and resistance of TCEB therapy. Development of the next generation of TCEBs is also discussed in addition to the comparison of TCEB with current chimeric antigen receptor-T therapy.

Keywords

Acknowledgement

This work was supported by the Bio & Medical Technology Development Program (No. 2017M3A9C8033570 & No. 2020M3H1A1075314) and the Regional Leading Research Center program (No. 2020R1A5A8019180) of the National Research Foundation (NRF) funded by the Korean government (MSIT) and by Korea Basic Science Institute (National Research Facilities and Equipment Center) grant funded by the Ministry of Education (No. 2021R1A6C101A390).

References

  1. Nisonoff A, Rivers MM. Recombination of a mixture of univalent antibody fragments of different specificity. Arch Biochem Biophys 1961;93:460-462. https://doi.org/10.1016/0003-9861(61)90296-X
  2. Fudenberg HH, Drews G, Nisonoff A. Serologic demonstration of dual specificity of rabbit bivalent hybrid antibody. J Exp Med 1964;119:151-166. https://doi.org/10.1084/jem.119.1.151
  3. Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975;256:495-497. https://doi.org/10.1038/256495a0
  4. Milstein C, Cuello AC. Hybrid hybridomas and their use in immunohistochemistry. Nature 1983;305:537-540. https://doi.org/10.1038/305537a0
  5. Suresh MR, Cuello AC, Milstein C. Advantages of bispecific hybridomas in one-step immunocytochemistry and immunoassays. Proc Natl Acad Sci U S A 1986;83:7989-7993. https://doi.org/10.1073/pnas.83.20.7989
  6. Lindhofer H, Mocikat R, Steipe B, Thierfelder S. Preferential species-restricted heavy/light chain pairing in rat/mouse quadromas. Implications for a single-step purification of bispecific antibodies. J Immunol 1995;155:219-225. https://doi.org/10.4049/jimmunol.155.1.219
  7. Mezzanzanica D, Canevari S, Menard S, Pupa SM, Tagliabue E, Lanzavecchia A, Colnaghi MI. Human ovarian carcinoma lysis by cytotoxic T cells targeted by bispecific monoclonal antibodies: analysis of the antibody components. Int J Cancer 1988;41:609-615. https://doi.org/10.1002/ijc.2910410422
  8. Brennan M, Davison PF, Paulus H. Preparation of bispecific antibodies by chemical recombination of monoclonal immunoglobulin G1 fragments. Science 1985;229:81-83. https://doi.org/10.1126/science.3925553
  9. Huston JS, Levinson D, Mudgett-Hunter M, Tai MS, Novotny J, Margolies MN, Ridge RJ, Bruccoleri RE, Haber E, Crea R. Protein engineering of antibody binding sites: recovery of specific activity in an antidigoxin single-chain Fv analogue produced in Escherichia coli. Proc Natl Acad Sci U S A 1988;85:5879-5883. https://doi.org/10.1073/pnas.85.16.5879
  10. Ridgway JB, Presta LG, Carter P. 'Knobs-into-holes' engineering of antibody CH3 domains for heavy chain heterodimerization. Protein Eng 1996;9:617-621. https://doi.org/10.1093/protein/9.7.617
  11. Linke R, Klein A, Seimetz D. Catumaxomab: clinical development and future directions. MAbs 2010;2:129-136. https://doi.org/10.4161/mabs.2.2.11221
  12. Brown P. Blinatumomab for MRD+  B-ALL: the evidence strengthens. Blood 2018;131:1497-1498. https://doi.org/10.1182/blood-2018-02-830364
  13. Gokbuget N, Dombret H, Bonifacio M, Reichle A, Graux C, Faul C, Diedrich H, Topp MS, Bruggemann M, Horst HA, et al. Blinatumomab for minimal residual disease in adults with B-cell precursor acute lymphoblastic leukemia. Blood 2018;131:1522-1531. https://doi.org/10.1182/blood-2017-08-798322
  14. Halford Z, Coalter C, Gresham V, Brown T. A systematic review of blinatumomab in the treatment of acute lymphoblastic leukemia: engaging an old problem with new solutions. Ann Pharmacother 2021;55:1236-1253. https://doi.org/10.1177/1060028020988411
  15. Neijssen J, Cardoso RM, Chevalier KM, Wiegman L, Valerius T, Anderson GM, Moores SL, Schuurman J, Parren PW, Strohl WR, et al. Discovery of amivantamab (JNJ-61186372), a bispecific antibody targeting EGFR and MET. J Biol Chem 2021;296:100641.
  16. Park K, Haura EB, Leighl NB, Mitchell P, Shu CA, Girard N, Viteri S, Han JY, Kim SW, Lee CK, et al. Amivantamab in EGFR exon 20 insertion-mutated non-small-cell lung cancer progressing on platinum chemotherapy: initial results from the CHRYSALIS phase I study. J Clin Oncol 2021;39:3391-3402. https://doi.org/10.1200/JCO.21.00662
  17. Romero D. Amivantamab is effective in NSCLC harbouring EGFR exon 20 insertions. Nat Rev Clin Oncol 2021;18:604.
  18. Cheong HS, Chang JS, Park JM, Byun SM. Affinity enhancement of bispecific antibody against two different epitopes in the same antigen. Biochem Biophys Res Commun 1990;173:795-800. https://doi.org/10.1016/S0006-291X(05)80857-5
  19. Kontermann RE. Dual targeting strategies with bispecific antibodies. MAbs 2012;4:182-197. https://doi.org/10.4161/mabs.4.2.19000
  20. Robert B, Dorvillius M, Buchegger F, Garambois V, Mani JC, Pugnieres M, Mach JP, Pelegrin A. Tumor targeting with newly designed biparatopic antibodies directed against two different epitopes of the carcinoembryonic antigen (CEA). Int J Cancer 1999;81:285-291. https://doi.org/10.1002/(SICI)1097-0215(19990412)81:2<285::AID-IJC19>3.0.CO;2-T
  21. Lu D, Kotanides H, Jimenez X, Zhou Q, Persaud K, Bohlen P, Witte L, Zhu Z. Acquired antagonistic activity of a bispecific diabody directed against two different epitopes on vascular endothelial growth factor receptor 2. J Immunol Methods 1999;230:159-171. https://doi.org/10.1016/S0022-1759(99)00135-0
  22. Asokan M, Rudicell RS, Louder M, McKee K, O'Dell S, Stewart-Jones G, Wang K, Xu L, Chen X, Choe M, et al. Bispecific antibodies targeting different epitopes on the HIV-1 envelope exhibit broad and potent neutralization. J Virol 2015;89:12501-12512. https://doi.org/10.1128/JVI.02097-15
  23. Tan W, Meng Y, Li H, Chen Y, Han S, Zeng J, Huang A, Li B, Zhang Y, Guo Y. A bispecific antibody against two different epitopes on hepatitis B surface antigen has potent hepatitis B virus neutralizing activity. MAbs 2013;5:946-955. https://doi.org/10.4161/mabs.26390
  24. You G, Won J, Lee Y, Moon D, Park Y, Lee SH, Lee SW. Bispecific antibodies: a smart arsenal for cancer immunotherapies. Vaccines (Basel) 2021;9:724.
  25. Blanco B, Dominguez-Alonso C, Alvarez-Vallina L. Bispecific immunomodulatory antibodies for cancer immunotherapy. Clin Cancer Res 2021;27:5457-5464. https://doi.org/10.1158/1078-0432.CCR-20-3770
  26. Hummel HD, Kufer P, Grullich C, Deschler-Baier B, Chatterjee M, Goebeler ME, Miller K, De Santis M, Loidl WC, Buck A, et al. Phase I study of pasotuxizumab (AMG 212/BAY 2010112), a PSMA-targeting BiTE (bispecific T-cell engager) immune therapy for metastatic castration-resistant prostate cancer (mCRPC). J Clin Oncol 2020;38 6_suppl:124.
  27. Tran B, Horvath L, Dorff T, Rettig M, Lolkema MP, Machiels JP, Rottey S, Autio K, Greil R, Adra N, et al. 609O results from a phase I study of AMG 160, a half-life extended (HLE), PSMA-targeted, bispecific T-cell engager (BiTE®) immune therapy for metastatic castration-resistant prostate cancer (mCRPC). Ann Oncol 2020;31:S507.
  28. Rosenthal MA, Balana C, van Linde ME, Sayehli C, Fiedler WM, Wermke M, Massard C, Mellinghoff IK, Khasraw M, Ang A, et al. ATIM-49 (LTBK-01). AMG 596, a novel anti-EGFRvIII bispecific T cell engager (BiTE®) molecule for the treatment of glioblastoma (GBM): planned interim analysis in recurrent GBM (rGBM). Neuro Oncol 2019;21 Supplement_6:vi283.
  29. Sternjak A, Lee F, Thomas O, Balazs M, Wahl J, Lorenczewski G, Ullrich I, Muenz M, Rattel B, Bailis JM, et al. Preclinical assessment of AMG 596, a bispecific T-cell engager (BiTE) immunotherapy targeting the tumor-specific antigen EGFRvIII. Mol Cancer Ther 2021;20:925-933. https://doi.org/10.1158/1535-7163.MCT-20-0508
  30. Park JH, Kim HJ, Kim CW, Kim HC, Jung Y, Lee HS, Lee Y, Ju YS, Oh JE, Park SH, et al. Tumor hypoxia represses γδ T cell-mediated antitumor immunity against brain tumors. Nat Immunol 2021;22:336-346. https://doi.org/10.1038/s41590-020-00860-7
  31. Oberg HH, Kellner C, Gonnermann D, Peipp M, Peters C, Sebens S, Kabelitz D, Wesch D. γδ T cell activation by bispecific antibodies. Cell Immunol 2015;296:41-49. https://doi.org/10.1016/j.cellimm.2015.04.009
  32. Ganesan R, Chennupati V, Ramachandran B, Hansen MR, Singh S, Grewal IS. Selective recruitment of γδ T cells by a bispecific antibody for the treatment of acute myeloid leukemia. Leukemia 2021;35:2274-2284. https://doi.org/10.1038/s41375-021-01122-7
  33. Xie G, Dong H, Liang Y, Ham JD, Rizwan R, Chen J. CAR-NK cells: a promising cellular immunotherapy for cancer. EBioMedicine 2020;59:102975.
  34. Quatrini L, Della Chiesa M, Sivori S, Mingari MC, Pende D, Moretta L. Human NK cells, their receptors and function. Eur J Immunol 2021;51:1566-1579.  https://doi.org/10.1002/eji.202049028
  35. Schmohl JU, Gleason MK, Dougherty PR, Miller JS, Vallera DA. Heterodimeric bispecific single chain variable fragments (scFv) killer engagers (BiKEs) enhance NK-cell activity against CD133+ colorectal cancer cells. Target Oncol 2016;11:353-361. https://doi.org/10.1007/s11523-015-0391-8
  36. Reusing SB, Vallera DA, Manser AR, Vatrin T, Bhatia S, Felices M, Miller JS, Uhrberg M, Babor F. CD16xCD33 bispecific killer cell engager (BiKE) as potential immunotherapeutic in pediatric patients with AML and biphenotypic ALL. Cancer Immunol Immunother 2021;70:3701-3708. https://doi.org/10.1007/s00262-021-03008-0
  37. Bogen JP, Carrara SC, Fiebig D, Grzeschik J, Hock B, Kolmar H. Design of a trispecific checkpoint inhibitor and natural killer cell engager based on a 2 + 1 common light chain antibody architecture. Front Immunol 2021;12:669496.
  38. Cheng Y, Zheng X, Wang X, Chen Y, Wei H, Sun R, Tian Z, Sun H. Trispecific killer engager 161519 enhances natural killer cell function and provides anti-tumor activity against CD19-positive cancers. Cancer Biol Med 2020;17:1026-1038. https://doi.org/10.20892/j.issn.2095-3941.2020.0399
  39. Schmohl JU, Felices M, Oh F, Lenvik AJ, Lebeau AM, Panyam J, Miller JS, Vallera DA. Engineering of anti-CD133 trispecific molecule capable of inducing NK expansion and driving antibody-dependent cell-mediated cytotoxicity. Cancer Res Treat 2017;49:1140-1152. https://doi.org/10.4143/crt.2016.491
  40. Vallera DA, Oh F, Kodal B, Hinderlie P, Geller MA, Miller JS, Felices M. A HER2 tri-specific NK cell engager mediates efficient targeting of human ovarian cancer. Cancers (Basel) 2021;13:3994.
  41. Dovedi SJ, Elder MJ, Yang C, Sitnikova SI, Irving L, Hansen A, Hair J, Jones DC, Hasani S, Wang B, et al. Design and efficacy of a monovalent bispecific PD-1/CTLA4 antibody that enhances CTLA4 blockade on PD-1+  activated T cells. Cancer Discov 2021;11:1100-1117. https://doi.org/10.1158/2159-8290.CD-20-1445
  42. Dovedi SJ, Mazor Y, Elder M, Hasani S, Wang B, Mosely S, Jones D, Hansen A, Yang C, Wu Y, et al. Abstract 2776: MEDI5752: a novel bispecific antibody that preferentially targets CTLA-4 on PD-1 expressing T-cells. Cancer Res 2018;78:2776.
  43. Anderson AC, Joller N, Kuchroo VK. Lag-3, Tim-3, and TIGIT: co-inhibitory receptors with specialized functions in immune regulation. Immunity 2016;44:989-1004. https://doi.org/10.1016/j.immuni.2016.05.001
  44. Deak LL, Seeber S, Perro M, Weber P, Lauener L, Chen S, Offner S, Dengl S, Hesse F, Zwick A, et al. Abstract 2270: RG7769 (PD1-TIM3), a novel heterodimeric avidity-driven T cell specific PD-1/TIM-3 bispecific antibody lacking Fc-mediated effector functions for dual checkpoint inhibition to reactivate dysfunctional T cells. Cancer Res 2020;80:2270.
  45. Gaspar M, Pravin J, Rodrigues L, Uhlenbroich S, Everett KL, Wollerton F, Morrow M, Tuna M, Brewis N. CD137/OX40 bispecific antibody induces potent antitumor activity that is dependent on target coengagement. Cancer Immunol Res 2020;8:781-793. https://doi.org/10.1158/2326-6066.CIR-19-0798
  46. Johnson M, Lopez J, LoRusso P, Bauman J, Haggstrom D, Lagkadinou E, Bajaj G, Tureci O, Adams H, Sahin U, et al. 493 first-in-human phase 1/2 trial to evaluate the safety and initial clinical activity of DuoBody®-CD40×4-1bb (GEN1042) in patients with advanced solid tumors. J Immunother Cancer 2021;9 Suppl 2:A525.
  47. Kvarnhammar AM, Veitonmaki N, Hagerbrand K, Dahlman A, Smith KE, Fritzell S, von Schantz L, Thagesson M, Werchau D, Smedenfors K, et al. The CTLA-4 x OX40 bispecific antibody ATOR-1015 induces anti-tumor effects through tumor-directed immune activation. J Immunother Cancer 2019;7:103.
  48. Jeong S, Park E, Kim HD, Sung E, Kim H, Jeon J, Kim Y, Jung UJ, Son YG, Hong Y, et al. Novel anti-4-1BB×PD-L1 bispecific antibody augments anti-tumor immunity through tumor-directed T-cell activation and checkpoint blockade. J Immunother Cancer 2021;9:e002428.
  49. Park JA, Santich BH, Xu H, Lum LG, Cheung NV. Potent ex vivo armed T cells using recombinant bispecific antibodies for adoptive immunotherapy with reduced cytokine release. J Immunother Cancer 2021;9:e002222. 
  50. Yankelevich M, Modak S, Chu R, Lee DW, Thakur A, Cheung NK, Lum LG. Phase I study of OKT3 x hu3F8 bispecific antibody (GD2Bi) armed T cells (GD2BATs) in GD2-positive tumors. J Clin Oncol 2019;37 15_suppl:2533.
  51. Thakur A, Scholler J, Kubicka E, Bliemeister ET, Schalk DL, June CH, Lum LG. Bispecific antibody armed metabolically enhanced headless car T cells. Front Immunol 2021;12:690437.
  52. Liu H, Saxena A, Sidhu SS, Wu D. Fc engineering for developing therapeutic bispecific antibodies and novel scaffolds. Front Immunol 2017;8:38.
  53. Zhang J, Yi J, Zhou P. Development of bispecific antibodies in China: overview and prospects. Antib Ther 2020;3:126-145. https://doi.org/10.1093/abt/tbaa011
  54. Stewart R, Hammond SA, Oberst M, Wilkinson RW. The role of Fc gamma receptors in the activity of immunomodulatory antibodies for cancer. J Immunother Cancer 2014;2:29.
  55. Saunders KO. Conceptual approaches to modulating antibody effector functions and circulation half-life. Front Immunol 2019;10:1296.
  56. You G, Lee Y, Kang YW, Park HW, Park K, Kim H, Kim YM, Kim S, Kim JH, Moon D, et al. B7-H3×4-1BB bispecific antibody augments antitumor immunity by enhancing terminally differentiated CD8+  tumorinfiltrating lymphocytes. Sci Adv 2021;7:eaax3160.
  57. Mlecnik B, Bindea G, Pages F, Galon J. Tumor immunosurveillance in human cancers. Cancer Metastasis Rev 2011;30:5-12. https://doi.org/10.1007/s10555-011-9270-7
  58. Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G, Makrigiannakis A, Gray H, Schlienger K, Liebman MN, et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med 2003;348:203-213. https://doi.org/10.1056/NEJMoa020177
  59. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C, Tosolini M, Camus M, Berger A, Wind P, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 2006;313:1960-1964. https://doi.org/10.1126/science.1129139
  60. Wahlin BE, Sander B, Christensson B, Kimby E. CD8+ T-cell content in diagnostic lymph nodes measured by flow cytometry is a predictor of survival in follicular lymphoma. Clin Cancer Res 2007;13:388-397. https://doi.org/10.1158/1078-0432.CCR-06-1734
  61. Zhu Z, Zapata G, Shalaby R, Snedecor B, Chen H, Carter P. High level secretion of a humanized bispecific diabody from Escherichia coli. Biotechnology (N Y) 1996;14:192-196. https://doi.org/10.1038/nbt0296-192
  62. Titus JA, Garrido MA, Hecht TT, Winkler DF, Wunderlich JR, Segal DM. Human T cells targeted with anti-T3 cross-linked to antitumor antibody prevent tumor growth in nude mice. J Immunol 1987;138:4018-4022. https://doi.org/10.4049/jimmunol.138.11.4018
  63. Weiner GJ, Hillstrom JR. Bispecific anti-idiotype/anti-CD3 antibody therapy of murine B cell lymphoma. J Immunol 1991;147:4035-4044. https://doi.org/10.4049/jimmunol.147.11.4035
  64. Demanet C, Brissinck J, De Jonge J, Thielemans K. Bispecific antibody-mediated immunotherapy of the BCL1 lymphoma: increased efficacy with multiple injections and CD28-induced costimulation. Blood 1996;87:4390-4398. https://doi.org/10.1182/blood.V87.10.4390.bloodjournal87104390
  65. Renner C, Jung W, Sahin U, Denfeld R, Pohl C, Trumper L, Hartmann F, Diehl V, van Lier R, Pfreundschuh M. Cure of xenografted human tumors by bispecific monoclonal antibodies and human T cells. Science 1994;264:833-835. https://doi.org/10.1126/science.8171337
  66. Kipriyanov SM, Moldenhauer G, Strauss G, Little M. Bispecific CD3 x CD19 diabody for T cell-mediated lysis of malignant human B cells. Int J Cancer 1998;77:763-772. https://doi.org/10.1002/(SICI)1097-0215(19980831)77:5<763::AID-IJC16>3.0.CO;2-2
  67. Cochlovius B, Kipriyanov SM, Stassar MJ, Schuhmacher J, Benner A, Moldenhauer G, Little M. Cure of Burkitt's lymphoma in severe combined immunodeficiency mice by T cells, tetravalent CD3 x CD19 tandem diabody, and CD28 costimulation. Cancer Res 2000;60:4336-4341. 
  68. Nitta T, Sato K, Yagita H, Okumura K, Ishii S. Preliminary trial of specific targeting therapy against malignant glioma. Lancet 1990;335:368-371. https://doi.org/10.1016/0140-6736(90)90205-J
  69. Canevari S, Stoter G, Arienti F, Bolis G, Colnaghi MI, Di Re EM, Eggermont AM, Goey SH, Gratama JW, Lamers CH, et al. Regression of advanced ovarian carcinoma by intraperitoneal treatment with autologous T lymphocytes retargeted by a bispecific monoclonal antibody. J Natl Cancer Inst 1995;87:1463-1469. https://doi.org/10.1093/jnci/87.19.1463
  70. Manzke O, Tesch H, Borchmann P, Wolf J, Lackner K, Gossmann A, Diehl V, Bohlen H. Locoregional treatment of low-grade B-cell lymphoma with CD3xCD19 bispecific antibodies and CD28 costimulation. I. Clinical phase I evaluation. Int J Cancer 2001;91:508-515. https://doi.org/10.1002/1097-0215(200002)9999:9999<::AID-IJC1068>3.0.CO;2-D
  71. Mack M, Riethmuller G, Kufer P. A small bispecific antibody construct expressed as a functional single-chain molecule with high tumor cell cytotoxicity. Proc Natl Acad Sci U S A 1995;92:7021-7025. https://doi.org/10.1073/pnas.92.15.7021
  72. Loffler A, Kufer P, Lutterbuse R, Zettl F, Daniel PT, Schwenkenbecher JM, Riethmuller G, Dorken B, Bargou RC. A recombinant bispecific single-chain antibody, CD19 x CD3, induces rapid and high lymphoma-directed cytotoxicity by unstimulated T lymphocytes. Blood 2000;95:2098-2103. https://doi.org/10.1182/blood.V95.6.2098
  73. Kufer P, Mack M, Gruber R, Lutterbuse R, Zettl F, Riethmuller G. Construction and biological activity of a recombinant bispecific single-chain antibody designed for therapy of minimal residual colorectal cancer. Cancer Immunol Immunother 1997;45:193-197. https://doi.org/10.1007/s002620050431
  74. Mack M, Gruber R, Schmidt S, Riethmuller G, Kufer P. Biologic properties of a bispecific single-chain antibody directed against 17-1A (EpCAM) and CD3: tumor cell-dependent T cell stimulation and cytotoxic activity. J Immunol 1997;158:3965-3970. https://doi.org/10.4049/jimmunol.158.8.3965
  75. Irvine DJ. Function-specific variations in the immunological synapses formed by cytotoxic T cells. Proc Natl Acad Sci U S A 2003;100:13739-13740. https://doi.org/10.1073/pnas.2536626100
  76. Portell CA, Wenzell CM, Advani AS. Clinical and pharmacologic aspects of blinatumomab in the treatment of B-cell acute lymphoblastic leukemia. Clin Pharmacol 2013;5:5-11. https://doi.org/10.2147/CPAA.S42689
  77. Topp MS, Gokbuget N, Zugmaier G, Klappers P, Stelljes M, Neumann S, Viardot A, Marks R, Diedrich H, Faul C, et al. Phase II trial of the anti-CD19 bispecific T cell-engager blinatumomab shows hematologic and molecular remissions in patients with relapsed or refractory B-precursor acute lymphoblastic leukemia. J Clin Oncol 2014;32:4134-4140. https://doi.org/10.1200/JCO.2014.56.3247
  78. Duell J, Lukic DS, Karg M, Reusch U, Koch J, Zhukovsky EA, Rajkovic E, Treder M, Rasche L, Eisele F, et al. Functionally defective T cells after chemotherapy of B-cell malignancies can be activated by the tetravalent bispecific CD19/CD3 antibody AFM11. J Immunother 2019;42:180-188. https://doi.org/10.1097/CJI.0000000000000267
  79. Frey NV, Porter DL. Cytokine release syndrome with novel therapeutics for acute lymphoblastic leukemia. Hematology Am Soc Hematol Educ Program 2016;2016:567-572. https://doi.org/10.1182/asheducation-2016.1.567
  80. Teachey DT, Rheingold SR, Maude SL, Zugmaier G, Barrett DM, Seif AE, Nichols KE, Suppa EK, Kalos M, Berg RA, et al. Cytokine release syndrome after blinatumomab treatment related to abnormal macrophage activation and ameliorated with cytokine-directed therapy. Blood 2013;121:5154-5157. https://doi.org/10.1182/blood-2013-02-485623
  81. Aldoss I, Khaled SK, Budde E, Stein AS. Cytokine release syndrome with the novel treatments of acute lymphoblastic leukemia: pathophysiology, prevention, and treatment. Curr Oncol Rep 2019;21:4.
  82. Barker CA, Kim SK, Budhu S, Matsoukas K, Daniyan AF, D'Angelo SP. Cytokine release syndrome after radiation therapy: case report and review of the literature. J Immunother Cancer 2018;6:1.
  83. Jung SH, Lee SR, Yang DH, Lee S, Yoon JH, Lee H, Bang SM, Koh Y, Park S, Kim DS, et al. Efficacy and safety of blinatumomab treatment in adult Korean patients with relapsed/refractory acute lymphoblastic leukemia on behalf of the Korean Society of Hematology ALL Working Party. Ann Hematol 2019;98:151-158. https://doi.org/10.1007/s00277-018-3495-2
  84. Nagele V, Kratzer A, Zugmaier G, Holland C, Hijazi Y, Topp MS, Gokbuget N, Baeuerle PA, Kufer P, Wolf A, et al. Changes in clinical laboratory parameters and pharmacodynamic markers in response to blinatumomab treatment of patients with relapsed/refractory ALL. Exp Hematol Oncol 2017;6:14. 
  85. Viardot A, Goebeler ME, Hess G, Neumann S, Pfreundschuh M, Adrian N, Zettl F, Libicher M, Sayehli C, Stieglmaier J, et al. Phase 2 study of the bispecific T-cell engager (BiTE) antibody blinatumomab in relapsed/refractory diffuse large B-cell lymphoma. Blood 2016;127:1410-1416. https://doi.org/10.1182/blood-2015-06-651380
  86. Topp MS, Kufer P, Gokbuget N, Goebeler M, Klinger M, Neumann S, Horst HA, Raff T, Viardot A, Schmid M, et al. Targeted therapy with the T-cell-engaging antibody blinatumomab of chemotherapy-refractory minimal residual disease in B-lineage acute lymphoblastic leukemia patients results in high response rate and prolonged leukemia-free survival. J Clin Oncol 2011;29:2493-2498. https://doi.org/10.1200/JCO.2010.32.7270
  87. Gokbuget N, Zugmaier G, Klinger M, Kufer P, Stelljes M, Viardot A, Horst HA, Neumann S, Bruggemann M, Ottmann OG, et al. Long-term relapse-free survival in a phase 2 study of blinatumomab for the treatment of patients with minimal residual disease in B-lineage acute lymphoblastic leukemia. Haematologica 2017;102:e132-e135. https://doi.org/10.3324/haematol.2016.153957
  88. von Stackelberg A, Locatelli F, Zugmaier G, Handgretinger R, Trippett TM, Rizzari C, Bader P, O'Brien MM, Brethon B, Bhojwani D, et al. Phase I/phase II study of blinatumomab in pediatric patients with relapsed/refractory acute lymphoblastic leukemia. J Clin Oncol 2016;34:4381-4389. https://doi.org/10.1200/JCO.2016.67.3301
  89. Kantarjian H, Stein A, Gokbuget N, Fielding AK, Schuh AC, Ribera JM, Wei A, Dombret H, Foa R, Bassan R, et al. Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia. N Engl J Med 2017;376:836-847. https://doi.org/10.1056/NEJMoa1609783
  90. Topp MS, Gokbuget N, Stein AS, Zugmaier G, O'Brien S, Bargou RC, Dombret H, Fielding AK, Heffner L, Larson RA, et al. Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: a multicentre, single-arm, phase 2 study. Lancet Oncol 2015;16:57-66. https://doi.org/10.1016/S1470-2045(14)71170-2
  91. Goebeler ME, Knop S, Viardot A, Kufer P, Topp MS, Einsele H, Noppeney R, Hess G, Kallert S, Mackensen A, et al. Bispecific T-cell engager (BiTE) antibody construct blinatumomab for the treatment of patients with relapsed/refractory non-Hodgkin lymphoma: final results from a phase I study. J Clin Oncol 2016;34:1104-1111. https://doi.org/10.1200/JCO.2014.59.1586
  92. Goebeler ME, Bargou RC. T cell-engaging therapies - BiTEs and beyond. Nat Rev Clin Oncol 2020;17:418-434. https://doi.org/10.1038/s41571-020-0347-5
  93. Nagorsen D, Bargou R, Ruttinger D, Kufer P, Baeuerle PA, Zugmaier G. Immunotherapy of lymphoma and leukemia with T-cell engaging BiTE antibody blinatumomab. Leuk Lymphoma 2009;50:886-891. https://doi.org/10.1080/10428190902943077
  94. Martinelli G, Boissel N, Chevallier P, Ottmann O, Gokbuget N, Topp MS, Fielding AK, Rambaldi A, Ritchie EK, Papayannidis C, et al. Complete hematologic and molecular response in adult patients with relapsed/refractory Philadelphia chromosome-positive B-precursor acute lymphoblastic leukemia following treatment with blinatumomab: results from a phase II, single-arm, multicenter study. J Clin Oncol 2017;35:1795-1802. https://doi.org/10.1200/JCO.2016.69.3531
  95. Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, Bader P, Verneris MR, Stefanski HE, Myers GD, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med 2018;378:439-448. https://doi.org/10.1056/NEJMoa1709866
  96. Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C, Feldman SA, Fry TJ, Orentas R, Sabatino M, Shah NN, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet 2015;385:517-528. https://doi.org/10.1016/S0140-6736(14)61403-3
  97. Abramson JS, Palomba ML, Gordon LI, Lunning MA, Wang M, Arnason J, Mehta A, Purev E, Maloney DG, Andreadis C, et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study. Lancet 2020;396:839-852. https://doi.org/10.1016/S0140-6736(20)31366-0
  98. Schuster SJ, Bishop MR, Tam CS, Waller EK, Borchmann P, McGuirk JP, Jager U, Jaglowski S, Andreadis C, Westin JR, et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N Engl J Med 2019;380:45-56.  https://doi.org/10.1056/NEJMoa1804980
  99. Neelapu SS, Locke FL, Bartlett NL, Lekakis LJ, Miklos DB, Jacobson CA, Braunschweig I, Oluwole OO, Siddiqi T, Lin Y, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med 2017;377:2531-2544. https://doi.org/10.1056/NEJMoa1707447
  100. Hoffmann P, Hofmeister R, Brischwein K, Brandl C, Crommer S, Bargou R, Itin C, Prang N, Baeuerle PA. Serial killing of tumor cells by cytotoxic T cells redirected with a CD19-/CD3-bispecific single-chain antibody construct. Int J Cancer 2005;115:98-104. https://doi.org/10.1002/ijc.20908
  101. Raponi S, De Propris MS, Intoppa S, Milani ML, Vitale A, Elia L, Perbellini O, Pizzolo G, Foa R, Guarini A. Flow cytometric study of potential target antigens (CD19, CD20, CD22, CD33) for antibody-based immunotherapy in acute lymphoblastic leukemia: analysis of 552 cases. Leuk Lymphoma 2011;52:1098-1107. https://doi.org/10.3109/10428194.2011.559668
  102. Dombret H, Topp MS, Schuh AC, Wei AH, Durrant S, Bacon CL, Tran Q, Zimmerman Z, Kantarjian H. Blinatumomab versus chemotherapy in first salvage or in later salvage for B-cell precursor acute lymphoblastic leukemia. Leuk Lymphoma 2019;60:2214-2222. https://doi.org/10.1080/10428194.2019.1576872
  103. Berry DA, Zhou S, Higley H, Mukundan L, Fu S, Reaman GH, Wood BL, Kelloff GJ, Jessup JM, Radich JP. Association of minimal residual disease with clinical outcome in pediatric and adult acute lymphoblastic leukemia: a meta-analysis. JAMA Oncol 2017;3:e170580.
  104. Edeline J, Houot R, Marabelle A, Alcantara M. CAR-T cells and BiTEs in solid tumors: challenges and perspectives. J Hematol Oncol 2021;14:65.
  105. Kebenko M, Goebeler ME, Wolf M, Hasenburg A, Seggewiss-Bernhardt R, Ritter B, Rautenberg B, Atanackovic D, Kratzer A, Rottman JB, et al. A multicenter phase 1 study of solitomab (MT110, AMG110), a bispecific EpCAM/CD3 T-cell engager (BiTE®) antibody construct, in patients with refractory solid tumors. Oncoimmunology 2018;7:e1450710.
  106. Yu WL, Hua ZC. Chimeric antigen receptor T-cell (CAR T) therapy for hematologic and solid malignancies: efficacy and safety-a systematic review with meta-analysis. Cancers (Basel) 2019;11:47.
  107. Sebastian M, Passlick B, Friccius-Quecke H, Jager M, Lindhofer H, Kanniess F, Wiewrodt R, Thiel E, Buhl R, Schmittel A. Treatment of non-small cell lung cancer patients with the trifunctional monoclonal antibody catumaxomab (anti-EpCAM x anti-CD3): a phase I study. Cancer Immunol Immunother 2007;56:1637-1644. https://doi.org/10.1007/s00262-007-0310-7
  108. Heiss MM, Murawa P, Koralewski P, Kutarska E, Kolesnik OO, Ivanchenko VV, Dudnichenko AS, Aleknaviciene B, Razbadauskas A, Gore M, et al. The trifunctional antibody catumaxomab for the treatment of malignant ascites due to epithelial cancer: results of a prospective randomized phase II/III trial. Int J Cancer 2010;127:2209-2221. https://doi.org/10.1002/ijc.25423
  109. Borlak J, Langer F, Spanel R, Schondorfer G, Dittrich C. Immune-mediated liver injury of the cancer therapeutic antibody catumaxomab targeting EpCAM, CD3 and Fcγ receptors. Oncotarget 2016;7:28059-28074. https://doi.org/10.18632/oncotarget.8574
  110. Haense N, Atmaca A, Pauligk C, Steinmetz K, Marme F, Haag GM, Rieger M, Ottmann OG, Ruf P, Lindhofer H, et al. A phase I trial of the trifunctional anti Her2 × anti CD3 antibody ertumaxomab in patients with advanced solid tumors. BMC Cancer 2016;16:420.
  111. Hummel HD, Kufer P, Grullich C, Deschler-Baier B, Chatterjee M, Goebeler ME, Miller K, De Santis M, Loidl WC, Buck A. Phase 1 study of pasotuxizumab (BAY 2010112), a PSMA-targeting bispecific T cell engager (BiTE) immunotherapy for metastatic castration-resistant prostate cancer (mCRPC). J Clin Oncol 2019;37 15_suppl:5034.
  112. Asseman C, Mauze S, Leach MW, Coffman RL, Powrie F. An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J Exp Med 1999;190:995-1004. https://doi.org/10.1084/jem.190.7.995
  113. Collison LW, Workman CJ, Kuo TT, Boyd K, Wang Y, Vignali KM, Cross R, Sehy D, Blumberg RS, Vignali DA. The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature 2007;450:566-569.  https://doi.org/10.1038/nature06306
  114. Baratelli F, Lin Y, Zhu L, Yang SC, Heuze-Vourc'h N, Zeng G, Reckamp K, Dohadwala M, Sharma S, Dubinett SM. Prostaglandin E2 induces FOXP3 gene expression and T regulatory cell function in human CD4+ T cells. J Immunol 2005;175:1483-1490. https://doi.org/10.4049/jimmunol.175.3.1483
  115. Bronte V, Serafini P, De Santo C, Marigo I, Tosello V, Mazzoni A, Segal DM, Staib C, Lowel M, Sutter G, et al. IL-4-induced arginase 1 suppresses alloreactive T cells in tumor-bearing mice. J Immunol 2003;170:270-278. https://doi.org/10.4049/jimmunol.170.1.270
  116. Youn JI, Nagaraj S, Collazo M, Gabrilovich DI. Subsets of myeloid-derived suppressor cells in tumorbearing mice. J Immunol 2008;181:5791-5802. https://doi.org/10.4049/jimmunol.181.8.5791
  117. Nagaraj S, Nelson A, Youn JI, Cheng P, Quiceno D, Gabrilovich DI. Antigen-specific CD4+ T cells regulate function of myeloid-derived suppressor cells in cancer via retrograde MHC class II signaling. Cancer Res 2012;72:928-938. https://doi.org/10.1158/0008-5472.CAN-11-2863
  118. Lewis JS, Landers RJ, Underwood JC, Harris AL, Lewis CE. Expression of vascular endothelial growth factor by macrophages is up-regulated in poorly vascularized areas of breast carcinomas. J Pathol 2000;192:150-158. https://doi.org/10.1002/1096-9896(2000)9999:9999<::AID-PATH687>3.0.CO;2-G
  119. Franklin RA, Liao W, Sarkar A, Kim MV, Bivona MR, Liu K, Pamer EG, Li MO. The cellular and molecular origin of tumor-associated macrophages. Science 2014;344:921-925. https://doi.org/10.1126/science.1252510
  120. Cortez-Retamozo V, Etzrodt M, Newton A, Rauch PJ, Chudnovskiy A, Berger C, Ryan RJ, Iwamoto Y, Marinelli B, Gorbatov R, et al. Origins of tumor-associated macrophages and neutrophils. Proc Natl Acad Sci U S A 2012;109:2491-2496. https://doi.org/10.1073/pnas.1113744109
  121. Trinklein ND, Pham D, Schellenberger U, Buelow B, Boudreau A, Choudhry P, Clarke SC, Dang K, Harris KE, Iyer S, et al. Efficient tumor killing and minimal cytokine release with novel T-cell agonist bispecific antibodies. MAbs 2019;11:639-652. https://doi.org/10.1080/19420862.2019.1574521
  122. Zuch de Zafra CL, Fajardo F, Zhong W, Bernett MJ, Muchhal US, Moore GL, Stevens J, Case R, Pearson JT, Liu S, et al. Targeting multiple myeloma with AMG 424, a novel anti-CD38/CD3 bispecific T-cell-recruiting antibody optimized for cytotoxicity and cytokine release. Clin Cancer Res 2019;25:3921-3933. https://doi.org/10.1158/1078-0432.CCR-18-2752
  123. Li J, Piskol R, Ybarra R, Chen YJ, Li J, Slaga D, Hristopoulos M, Clark R, Modrusan Z, Totpal K, et al. CD3 bispecific antibody-induced cytokine release is dispensable for cytotoxic T cell activity. Sci Transl Med 2019;11:eaax8861.
  124. Bortoletto N, Scotet E, Myamoto Y, D'Oro U, Lanzavecchia A. Optimizing anti-CD3 affinity for effective T cell targeting against tumor cells. Eur J Immunol 2002;32:3102-3107. https://doi.org/10.1002/1521-4141(200211)32:11<3102::AID-IMMU3102>3.0.CO;2-C
  125. Bonvini E, La Motte-Mohs R, Huang L, Lam CY, Kaufman T, Liu L, Alderson RF, Stahl K, Brown JG, Li H, et al. A next-generation Fc-bearing CD3-engaging bispecific dart® platform with extended pharmacokinetic and expanded pharmacologic window: characterization as CD123 X CD3 AND CD19 X CD3 dart molecules. Blood 2018;132:5230.
  126. Haber L, Olson K, Kelly MP, Crawford A, DiLillo DJ, Tavare R, Ullman E, Mao S, Canova L, Sineshchekova O, et al. Generation of T-cell-redirecting bispecific antibodies with differentiated profiles of cytokine release and biodistribution by CD3 affinity tuning. Sci Rep 2021;11:14397.
  127. Arvedson TL, Balazs M, Bogner P, Black K, Graham K, Henn A, Friedrich M, Hoffmann P, Kischel R, Kufer P, et al. Abstract 55: Generation of half-life extended anti-CD33 BiTE® antibody constructs compatible with once-weekly dosing. Cancer Res 2017;77:55.
  128. Lorenczewski G, Friedrich M, Kischel R, Dahlhoff C, Anlahr J, Balazs M, Rock D, Boyle M, Goldstein R, Coxon A, et al. Generation of a half-life extended anti-CD19 BiTE® antibody construct compatible with once-weekly dosing for treatment of CD19-positive malignancies. Blood 2017;130:2815.
  129. Einsele H, Borghaei H, Orlowski RZ, Subklewe M, Roboz GJ, Zugmaier G, Kufer P, Iskander K, Kantarjian HM. The BiTE (bispecific T-cell engager) platform: development and future potential of a targeted immuno-oncology therapy across tumor types. Cancer 2020;126:3192-3201.  https://doi.org/10.1002/cncr.32909