과제정보
This research was supported by GS Caltex Corporation, Republic of Korea.
참고문헌
- Apel, K. and Hirt, H. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55:373-399. https://doi.org/10.1146/annurev.arplant.55.031903.141701
- Backer, R., Naidoo, S. and van den Berg, N. 2019. The nonexpressor of pathogenesis-related genes 1 (NPR1) and related family: mechanistic insights in plant disease resistance. Front. Plant Sci. 10:102. https://doi.org/10.3389/fpls.2019.00102
- Barrett, E. L., Collins, E. B., Hall, B. J. and Matoi, S. H. 1983. Production of 2,3-butylene glycol from whey by Klebsiella pneumoniae and Enterobacter aerogenes. J. Dairy Sci. 66:2507-2514. https://doi.org/10.3168/jds.s0022-0302(83)82119-5
- Beard, J. B. and Green, R. L. 1994. The role of turfgrasses in environmental protection and their benefits to humans. J. Environ. Qual. 23:452-460. https://doi.org/10.2134/jeq1994.00472425002300030007x
- Benelli, J. J., Horvath, B. J., Womac, A. R., Ownley, B. H., Windham, A. S. and Sorochan, J. C. 2018. Large patch (Rhizoctonia solani AG 2-2LP) severity on Japanese lawngrass (Zoysia japonica) influenced by fungicide and application target site. Crop Prot. 106:23-28. https://doi.org/10.1016/j.cropro.2017.12.003
- Biczak, R. 2016. Quaternary ammonium salts with tetrafluoroborate anion: phytotoxicity and oxidative stress in terrestrial plants. J. Hazard. Mater. 304:173-185. https://doi.org/10.1016/j.jhazmat.2015.10.055
- Chung, J.-h., Song, G. C. and Ryu, C.-M. 2016. Sweet scents from good bacteria: case studies on bacterial volatile compounds for plant growth and immunity. Plant Mol. Biol. 90:677-687. https://doi.org/10.1007/s11103-015-0344-8
- Cortes-Barco, A. M., Hsiang, T. and Goodwin, P. H. 2010. Induced systemic resistance against three foliar diseases of Agrostis stolonifera by (2R,3R)-Butanediol or an isoparaffin mixture. Ann. Appl. Biol. 157:179-189. https://doi.org/10.1111/j.1744-7348.2010.00417.x
- D'Alessandro, M., Erb, M., Ton, J., Brandenburg, A., Karlen, D., Zopfi, J. and Turlings, T. C. J. 2014. Volatiles produced by soil-borne endophytic bacteria increase plant pathogen resistance and affect tritrophic interactions. Plant Cell Environ. 37:813-826. https://doi.org/10.1111/pce.12220
- Damalas, C. A. and Eleftherohorinos, I. G. 2011. Pesticide exposure, safety issues, and risk assessment indicators. Int. J. Environ. Res. Public Health 8:1402-1419. https://doi.org/10.3390/ijerph8051402
- Garg, S. K. and Jain, A. 1995. Fermentative production of 2,3-butanediol: a review. Bioresour. Technol. 51:103-109. https://doi.org/10.1016/0960-8524(94)00136-O
- Gonzalez-Bosch, C. 2018. Priming plant resistance by activation of redox-sensitive genes. Free Radic. Biol. Med. 122:171-180. https://doi.org/10.1016/j.freeradbiomed.2017.12.028
- Han, S. H., Lee, S. J., Moon, J. H., Park, K. H., Yang, K. Y., Cho, B. H., Kim, K. Y., Kim, Y. W., Lee, M. C., Anderson, A. J. and Kim, Y. C. 2006. GacS-dependent production of 2R, 3R-butanediol by Pseudomonas chlororaphis O6 is a major determinant for eliciting systemic resistance against Erwinia carotovora but not against Pseudomonas syringae pv. tabaci in tobacco. Mol. Plant-Microbe Interact. 19:924-930. https://doi.org/10.1094/mpmi-19-0924
- Hasanuzzaman, M., Bhuyan, M. H. M. B., Anee, T. I., Parvin, K., Nahar, K., Mahmud, J. A. and Fujita, M. 2019. Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants (Basel) 8:384. https://doi.org/10.3390/antiox8090384
- Kim, D., Yoon, J., Yoo, J., Kim, S.-J. and Yang, J. E. 2014. Status and management strategy of pesticide use in golf courses in Korea. J. Appl. Biol. Chem. 57:267-277 (in Korean). https://doi.org/10.3839/jabc.2014.043
- Kobayashi, D. Y., Guglielmoni, M. and Clarke, B. B. 1995. Isolation of the chitinolytic bacteria Xanthomonas maltophilia and Serratia marcescens as biological control agents for summer patch disease of turfgrass. Soil Biol. Biochem. 27:1479-1487. https://doi.org/10.1016/0038-0717(95)00062-J
- Kong, H. G., Shin, T. S., Kim, T. H. and Ryu, C.-M. 2018. Stereoisomers of the bacterial volatile compound 2,3-butanediol differently elicit systemic defense responses of pepper against multiple viruses in the field. Front. Plant Sci. 9:90. https://doi.org/10.3389/fpls.2018.00090
- Liu, Y., Lonappan, L., Brar, S. K. and Yang, S. 2018. Impact of biochar amendment in agricultural soils on the sorption, desorption, and degradation of pesticides: a review. Sci. Total Environ. 645:60-70. https://doi.org/10.1016/j.scitotenv.2018.07.099
- Mofidnakhaei, M., Abdossi, V., Dehestani, A., Pirdashti, H. and Babaeizad, V. 2016. Potassium phosphite affects growth, antioxidant enzymes activity and alleviates disease damage in cucumber plants inoculated with Pythium ultimum. Arch. Phytopathol. Plant Prot. 49:207-221. https://doi.org/10.1080/03235408.2016.1180924
- Mohammadi, M. A., Cheng, Y., Aslam, M., Jakada, B. H., Wai, M. H., Ye, K., He, X., Luo, T., Ye, L., Dong, C., Hu, B., Priyadarshani, S. V. G. N., Wang-Pruski, G. and Qin, Y. 2021. ROS and oxidative response systems in plants under biotic and abiotic stresses: revisiting the crucial role of phosphite triggered plants defense response. Front. Microbiol. 12:631318. https://doi.org/10.3389/fmicb.2021.631318
- Ogura, A. P., Lima, J. Z., Marques, J. P., Massaro Sousa, L., Rodrigues, V. G. S. and Espindola, E. L. G. 2021. A review of pesticides sorption in biochar from maize, rice, and wheat residues: current status and challenges for soil application. J. Environ. Manage. 300:113753. https://doi.org/10.1016/j.jenvman.2021.113753
- Pajerowska-Mukhtar, K. M., Emerine, D. K. and Mukhtar, M. S. 2013. Tell me more: roles of NPRs in plant immunity. Trends Plant Sci. 18:402-411. https://doi.org/10.1016/j.tplants.2013.04.004
- Park, K. Y., Seo, S. Y., Oh, B.-R., Seo, J.-W. and Kim, Y. J. 2018. 2,3-Butanediol induces systemic acquired resistance in the plant immune response. J. Plant Biol. 61:424-434. https://doi.org/10.1007/s12374-018-0421-z
- Pieterse, C. M., Leon-Reyes, A., Van der Ent, S. and Van Wees, S. C. M. 2009. Networking by small-molecule hormones in plant immunity. Nat. Chem. Biol. 5:308-316. https://doi.org/10.1038/nchembio.164
- Rahman, A., Uddin, W. and Wenner, N. G. 2015. Induced systemic resistance responses in perennial ryegrass against Magnaporthe oryzae elicited by semi-purified surfactin lipopeptides and live cells of Bacillus amyloliquefaciens. Mol. Plant Pathol. 16:546-558. https://doi.org/10.1111/mpp.12209
- Ryu, C.-M., Farag, M. A., Hu, C.-H., Reddy, M. S., Kloepper, J. W. and Pare, P. W. 2004. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol. 134:1017-1026. https://doi.org/10.1104/pp.103.026583
- Ryu, C.-M., Farag, M. A., Hu, C.-H., Reddy, M. S., Wei, H.-X., Pare, P. W. and Kloepper, J. W. 2003. Bacterial volatiles promote growth in Arabidopsis. Proc. Natl Acad. Sci. U. S. A. 100:4927-4932. https://doi.org/10.1073/pnas.0730845100
- Sharma, S., Chen, C., Navathe, S., Chand, R. and Pandey, S. P. 2019. A halotolerant growth promoting rhizobacteria triggers induced systemic resistance in plants and defends against fungal infection. Sci. Rep. 9:4054. https://doi.org/10.1038/s41598-019-40930-x
- Shi, Y., Liu, X., Fang, Y., Tian, Q., Jiang, H. and Ma, H. 2018. 2, 3-Butanediol activated disease-resistance of creeping bentgrass by inducing phytohormone and antioxidant responses. Plant Physiol. Biochem. 129:244-250. https://doi.org/10.1016/j.plaphy.2018.06.010
- Stackhouse, T., Martinez-Espinoza, A. D. and Ali, M. E. 2020. Turfgrass disease diagnosis: past, present, and future. Plants (Basel) 9:1544.
- Tyagi, S., Lee, K.-J., Shukla, P. and Chae, J.-C. 2020. Dimethyl disulfide exerts antifungal activity against Sclerotinia minor by damaging its membrane and induces systemic resistance in host plants. Sci. Rep. 10:6547. https://doi.org/10.1038/s41598-020-63382-0
- Urooj, F., Farhat, H., Tariq, A., Moin, S., Sohail, N., Sultana, V., Hameedi, S. F., Shams, Z. I. and Ehteshamul-Haque, S. 2021. Role of endophytic Penicillium species and Pseudomonas monteilii in inducing the systemic resistance in okra against root rotting fungi and their effect on some physiochemical properties of okra fruit. J. Appl. Microbiol. 130:604-616. https://doi.org/10.1111/jam.14894
- Wightwick, A., Walters, R., Allinson, G., Reichman, S. and Menzies, N. 2010. Environmental risks of fungicides used in horticultural production systems. In: Disease decision support systems: their impact on disease management and durability of fungicide effectiveness: fungicides, eds. by O. Carisse, D.-M. Tremblay, T. Jobin and A. S. Walker, pp. 273-304. InTech, Rijeka, Croatia.
- Yi, H.-S., Ahn, Y.-R., Song, G. C., Ghim, S.-Y., Lee, S., Lee, G. and Ryu, C.-M. 2016. Impact of a bacterial volatile 2,3-butanediol on Bacillus subtilis Rhizosphere Robustness. Front. Microbiol. 7:993. https://doi.org/10.3389/fmich.2016.00993
- Zhou, M., Hu, Q., Li, Z., Li, D., Chen, C.-F. and Luo, H. 2011. Expression of a novel antimicrobial peptide Penaeidin4-1 in creeping bentgrass (Agrostis stolonifera L.) enhances plant fungal disease resistance. PLoS ONE 6:e24677. https://doi.org/10.1371/journal.pone.0024677