Acknowledgement
본 연구는 국립해양조사원의 「2021년 해양예보 정보 종합분석 및 특화 해양예보」 및 「2022년항계안전을 위한 해양정보 확대 및 개선」 사업의 지원을 받아 수행되었습니다.
References
- 국립해양조사원(KHOA), 2021. "바다누리 해양정보 서비스". http://www.khoa.go.kr/oceangrid/gis/category/observe/observeSearch.do?type=EYS#none, Accessed 12 January 2022.
- 기상청(KMA), 2022. "기상청 날씨누리" https://www.weather.go.kr/plus/sea/forecast/marine_daily.jsp?topArea=12E00000, Accessed 13 May 2022.
- 김성중, 우성호, 김백민, 허순도, 2011. 지난 130년 간 한반도 근해의 표층 수온 변화 경향. Ocean and Polar Research., 33(3): 281-290, doi: http://dx.doi.org/10.4217/OPR.2011.33.3.281.
- 민홍식, 김철호, 2006. 한국 연안 표층수온의 경년변동과 장기변화. Ocean and Polar Research, 28(4): 415-423, doi: http://dx.doi.org/10.4217/OPR.2006.28.4.415.
- 박영규, 2005. 기후 변화와 해양 열염분 순환. 한국기상학회, 15(1): 69-74.
- 정시훈, 김영준, 박수민, 임정호, 2020. 시계열 기계학습을 이용한 한반도 남해 해수면 온도 예측 및 고수온 탐지, 대한원격탐사학회지, 36(5): 1077-1093. https://doi.org/10.7780/kjrs.2020.36.5.3.7
- Aparna, S.G., S. D'Souza and N.B. Arjun, 2018. Prediction of daily sea surface temperature using artificial neural networks. International Journal of Remote sensing, 39(12): 4214-4231, doi: https://doi.org/10.1080/01431161.2018.1454623.
- Bai, S., J.Z. Kolter and V. Koltun, 2018. An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling. arXiv preprint, arXiv:1803.01271.
- Bjornsson, H. and S.A. Venegas, 1997. A Manual for EOF and SVD analyses of Climate data. CCGCR Report, 97(1): 112-134.
- Bolton, T. and L. Zanna, 2019. Applications of deep learning to ocean data inference and subgrid parameterization. Journal of Advances in Modeling Earth Systems, 11: 376-399, doi: https://doi.org/10.1029/2018MS001472.
- Bryan, K., 1997. A Numerical Method for the Study of the Circulation of the World Ocean. Journal of Computational Physics, 135(2): 154-169, doi: https://doi.org/10.1006/jcph.1997.5699.
- Donlon, C.J., M. Martin, J. Stark, J. Roberts-Jones, E. Fiedler and W. Wimmer, 2012. The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system. Remote Sensing of Environment, 116: 140-158, doi: https://doi.org/10.1016/j.rse.2010.10.017.
- Lei, M., L. Shiyan, J. Chuanwen, L. Hongling and Z. Yan, 2009. A review on the forecasting of wind speed and generated power. Renewable and Sustainable Energy Reviews, 13(4): 915-920, doi: https://doi.org/10.1016/j.rser.2008.02.002.
- O'Carroll, A.G., E.M. Armstrong, H.M. Beggs, M. Bouali, K.S. Casey, G.K. Corlett, P. Dash, C.J. Donlon, C.L. Gentemann, J.L. Hoyer, A. Ignatov, K. Kabobah, M. Kachi, Y. Kurihara, I. Karagali, E. Maturi, C.J. Merchant, S. Marullo, P.J. Minnett, M. Pennybacker, B. Ramakrishnan, R. Ramsankaran, R. Santoleri, S. Sunder, S.S. Picart, J. Vazquez-Cuervo and W. Wimmer, 2019. Observational Needs of Sea Surface Temperature. Frontiers in Marine Science, 6: 420, doi: 10.3389/fmars.2019.00420.
- Ronneberger, O., P. Fischer and T. Brox, 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv preprint, arXiv:1505.04597.
- Ruder, S., 2017. An overview of gradient descent optimization algorithms. arXiv preprint, arXiv:1609.04747.
- Shi, X., Z. Chen, H. Wang, D. Yeung, W. Wong and W. Woo, 2015. Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting. NIPS'15: Proceedings of the 28th International Conference on Neural Information Processing Systems, 1: 802-810.
- Sun, C., J. Li, F. Jin and R. Ding, 2013. Sea surface temperature inter-hemispheric dipole and its relation to tropical precipitation. Environmental Research Letters, 8: 044006, doi: 10.1088/1748-9326/8/4/044006.
- Temizyurek, M. and F. Dadaser-Celik, 2018. Modelling the effects of meteorological parameters on water temperature using artificial neural networks. Water Science & Technology, 77(5-6): 1724-1733, doi: https://doi.org/10.2166/wst.2018.058.
- Wu, Q.X., D. Pairman, S.J. McNeill and E.J. Barnes, 1992. Computing Advective Velocities from satellite Images of Sea Surface Temperature. IEEE Transactions on Geoscience and Remote Sensing, 30(1): 166-176, doi: 10.1109/36.124227.
- Xiao, C., N. Chen, C. Hu, K. Wang, Z. Xu, Y. Cai, L. Xu, Z. Chen and J. Gong, 2019. A spatiotemporal deep learning model for sea surface temperature field prediction using time-series satellite data. Environmental Modelling & Software, 120: 104502, doi: https://doi.org/10.1016/j.envsoft.2019.104502.
- Xu, M and H. Xu, 2015. Atmpospheric Responses to Kuroshio SST Front in the East China Sea under Different Prevailing Winds in Winter and Spring. Journal of Climate, 28(8): 3191-3211, doi: 10.1175/JCLI-D-13-00675.1.
- Zhai, Z., D.Q. Nguyen and K. Verspoor, 2018. Comparing CNN and LSTM character-level embeddings in BiLSTM-CRF models for chemical and disease named entity recognition. arXiv preprint, arXiv:1808.08450.