Acknowledgement
This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government (NRF-2020R1A2B5B01002766).
References
- Boss GR, Seegmiller JE. Age-related physiological changes and their clinical significance. Western Journal of Medicine. 1981;135(6):434-440.
- Mather M. Aging and cognition. Wiley Interdisciplinary Reviews: Cognitive Science. 2010;1(3):346-362. https://doi.org/10.1002/wcs.64
- Nimse SB, Pal D. Free radicals, natural anti-oxidants, and their reaction mechanisms. RSC Advances. 2015;5(35):27986-28006. https://doi.org/10.1039/C4RA13315C
- Barrientos RM, Kitt MM, Watkins LR, Maier SF. Neuroinflammation in the normal aging hippocampus. Neuroscience. 2015;309: 84-99. https://doi.org/10.1016/j.neuroscience.2015.03.007
- Hepsomali P, Groeger JA, Nishihira J, Scholey A. Effects of oral gamma-aminobutyric acid (GABA) administration on stress and sleep in humans: a systematic review. Frontiers in Neuroscience. 2020;14:923. https://doi.org/10.3389/fnins.2020.00923
- Lissemore JI, Bhandari A, Mulsant BH, Lenze EJ, Reynolds CF, Karp JF, et al. Reduced GABAergic cortical inhibition in aging and depression. Neuropsychopharmacology. 2018;43:2277-2284. https://doi.org/10.1038/s41386-018-0093-x
- Tremblay R, Lee S, Rudy B. GABAergic Interneurons in the neocortex: from cellular properties to circuits. Neuron. 2016;91(2):260-292. https://doi.org/10.1016/j.neuron.2016.06.033
- Lehmann K, Steinecke A, Bolz J. GABA through the ages: regulation of cortical function and plasticity by inhibitory interneurons. Neural Plasticity. 2012;2012:892784. https://doi.org/10.1155/2012/892784
- Qin C, Li Y, Niu W, Ding Y, Zhang R, Shang X. Analysis and characterisation of anthocyanins in mulberry fruit. Czech Journal of Food Sciences. 2010;28:117-126. https://doi.org/10.17221/228/2008-CJFS
- Tewari RK, Kumar P, Sharma PN. Antioxidant responses to enhanced generation of superoxide anion radical and hydrogen peroxide in the copper-stressed mulberry plants. Planta. 2006;223(6):1145-1153. https://doi.org/10.1007/s00425-005-0160-5
- Zhong Y, Wu S, Chen F, He M, Lin J. Isolation of high γ-aminobutyric acid-producing lactic acid bacteria and fermentation in mulberry leaf powders. Experimental and Therapeutic Medicine. 2019;18(1):147-153. https://doi.org/10.3892/etm.2019.7557
- Vorhees C, Williams M. Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nature Protocols. 2006;1:848-858. https://doi.org/10.1038/nprot.2006.116
- Eagle AL, Wang H, Robison AJ. Sensitive assessment of hippocampal learning using temporally dissociated passive avoidance task. Bio-protocol. 2016;6(11):e1821. https://doi.org/10.21769/BioProtoc.1821
- Fougere B, Boulanger E, Nourhashemi F, Guyonnet S, Cesari M. Chronic inflammation: accelerator of biological aging. Journals of Gerontology Series A: Biological Sciences and Medical Sciences. 2017;72(9):1218-1225. https://doi.org/10.1093/gerona/glw240
- Christine C. Winterbourn. The biological chemistry of hydrogen peroxide. Methods in Enzymology. 2013;528:3-25. https://doi.org/10.1016/B978-0-12-405881-1.00001-X
- Sheng Y, Abreu IA, Cabelli DE, Maroney MJ, Miller AF, Teixeira M, et al. Superoxide dismutases and superoxide reductases. Chemical Reviews. 2014;114(7):3854-3918. https://doi.org/10.1021/cr4005296
- Board PG, Coggan M, Chelvanayagam G, Easteal S, Jermiin LS, Schulte GK, et al. Identification, characterization, and crystal structure of the omega class glutathione transferases. Journal of Biological Chemistry. 2000;275(32):24798-24806. https://doi.org/10.1074/jbc.M001706200
- Kim Y, Cha SJ, Choi HJ, Kim K. Omega class glutathione s-transferase: Anti-oxidant enzyme in pathogenesis of neurodegenerative diseases. Oxidative Medicine and Cellular Longevity. 2017;2017:5049532. https://doi.org/10.1155/2017/5049532
- Martin DL, Rimvall K. Regulation of γ-aminobutyric acid synthesis in the brain. Journal of Neurochemistry. 1993;60(2):395-407. https://doi.org/10.1111/j.1471-4159.1993.tb03165.x
- Lazarus MS, Krishnan K, Huang ZJ. GAD67 deficiency in parvalbumin interneurons produces deficits in inhibitory transmission and network disinhibition in mouse prefrontal cortex. Cereb Cortex. 2015;25(5):1290-1296. https://doi.org/10.1093/cercor/bht322
- Conde F, Lund JS, Jacobowitz DM, Baimbridge KG, Lewis DA. Local circuit neurons immunoreactive for calretinin, calbindin D-28k or parvalbumin in monkey prefronatal cortex: Distribution and morphology. Journal of Comparative Neurology. 1994;341(1):95-116. https://doi.org/10.1002/cne.903410109
- Ermak G, Davies KJA. Calcium and oxidative stress: from cell signaling to cell death. Molecular Immunology. 2002;38(10):713-721. https://doi.org/10.1016/s0161-5890(01)00108-0
- Miller JB, Pratap A, Miyahara A, Zhou L, Bornemann S, Morris RJ, et al. Calcium/calmodulin-dependent protein kinase is negatively and positively regulated by calcium, providing a mechanism for decoding calcium responses during symbiosis signaling. Plant Cell. 2013;25(12):5053-5066. https://doi.org/10.1105/tpc.113.116921
- Caillard O, Moreno H, Schwaller B, Llano I, Celio MR, Marty A. Role of the calcium-binding protein parvalbumin in short-term synaptic plasticity. The Proceedings of the National Academy of Sciences. 2000;97(24):13372-13377. https://doi.org/10.1073/pnas.230362997
- Iascone DM, Li Y, Sumbul U, Doron M, Chen H, Andreu V, et al. Whole-neuron synaptic mapping reveals spatially precise excitatory/inhibitory balance limiting dendritic and somatic spiking. Neuron. 2020;106(4):566-578. https://doi.org/10.1016/j.neuron.2020.02.015
- Lam NH, Borduqui T, Hallak J, Roque AC, Anticevic A, Krystal JH, et al. Effects of altered excitation-inhibition balance on decision making in a cortical circuit model. bioRxiv. 2017; 42(6):1035-1053. https://doi.org/10.1523/JNEUROSCI.1371-20.2021
- Lopatina OL, Malinovskaya NA, Komleva YK, Gorina YV, Shuvaev AN, Olovyannikova RY, et al. Excitation/inhibition imbalance and impaired neurogenesis in neurodevelopmental and neurodegenerative disorders. Reviews in the Neurosciences. 2019;30(8):807-820. https://doi.org/10.1515/revneuro-2019-0014
- McQuail JA, Frazier CJ, Bizon JL. Molecular aspects of age-related cognitive decline: the role of GABA signaling. Trends in Molecular Medicine. 2015;21(7):450-460. https://doi.org/10.1016/j.molmed.2015.05.002