Acknowledgement
This work was supported by Basic and Frontier Research Project of Nanyang city (JCQY010), Interdisciplinary Research Project of Nanyang Institute of Technology (JC20191205), Opening Foundation of Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology (HIMFT20200101 and HIMFT20200204), National Natural Science Foundation of China (31800001), Key Scientific Research Project of Colleges and Universities in Henan Province (20A180019) and Key Technologies R&D Program of Nanyang city (KJGG079).
References
- Roy S, Dikshit PK, Sherpa KC, et al. Recent nanobiotechnological advancements in lignocellulosic biomass valorization: a review. J Environ Manage. 2021;297:113422. https://doi.org/10.1016/j.jenvman.2021.113422
- Kumar D, Singh B, Korstad J, et al. Utilization of lignocellulosic biomass by oleaginous yeast and bacteria for production of biodiesel and renewable diesel. Renewable Sustainable Energy Rev. 2017;73:654-671. https://doi.org/10.1016/j.rser.2017.01.022
- Akhlisah ZN, Yunus R, Abidin ZZ, et al. Pretreatment methods for an effective conversion of oil palm biomass into sugars and high-value chemicals. Biomass Bioenergy. 2021;144:105901. https://doi.org/10.1016/j.biombioe.2020.105901
- Abdel-Rahman MA, Tashiro Y, Sonomoto K, et al. Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: overview and limits. J Biotechnol. 2011;156(4):286-301. https://doi.org/10.1016/j.jbiotec.2011.06.017
- Hoang AT, Nizetic S, Ong HC, et al. Insight into the recent advances of microwave pretreatment technologies for the conversion of lignocellulosic biomass into sustainable biofuel. Chemosphere. 2021;281:130878. https://doi.org/10.1016/j.chemosphere.2021.130878
- Awasthi MK, Sarsaiya S, Patel A, et al. Refining biomass residues for sustainable energy and bioproducts: an assessment of technology, its importance, and strategic applications in circular bioeconomy. Renewable Sustainable Energy Rev. 2020;127:109876. https://doi.org/10.1016/j.rser.2020.109876
- Bhatia SK, Kim S-H, Yoon J-J, et al. Current status and strategies for second generation biofuel production using microbial systems. Energy Convers Manage. 2017;148:1142-1156. https://doi.org/10.1016/j.enconman.2017.06.073
- Tanimura A, Takashima M, Sugita T, et al. Lipid production through simultaneous utilization of glucose, xylose, and L-arabinose by Pseudozyma hubeiensis: a comparative screening study. AMB Express. 2016;6(1):58. https://doi.org/10.1186/s13568-016-0236-6
- Brandenburg J, Blomqvist J, Pickova J, et al. Lipid production from hemicellulose with Lipomyces starkeyi in a pH regulated fed-batch cultivation. Yeast. 2016;33(8):451-462. https://doi.org/10.1002/yea.3160
- Tanadul O-U-M, Noochanong W, Jirakranwong P, et al. EMS-induced mutation followed by quizalofop-screening increased lipid productivity in chlorella sp. Bioprocess Biosyst Eng. 2018;41(5):613-619. https://doi.org/10.1007/s00449-018-1896-1
- Sarkar P, Goswami G, Mukherjee M, et al. Heterologous expression of xylose specific transporter improves xylose utilization by recombinant Zymomonas mobilis strain in presence of glucose. Process Biochem. 2021;102:190-198. https://doi.org/10.1016/j.procbio.2021.01.006
- Sun T, Yu Y, Wang K, et al. Engineering Yarrowia lipolytica to produce fuels and chemicals from xylose: a review. Bioresour Technol. 2021;337:125484. https://doi.org/10.1016/j.biortech.2021.125484
- Hu C, Wu S, Wang Q, et al. Simultaneous utilization of glucose and xylose for lipid production by Trichosporon cutaneum. Biotechnol Biofuels. 2011;4(1):25., https://doi.org/10.1186/1754-6834-4-25
- Tanimura A, Sugita T, Endoh R, et al. Lipid production via simultaneous conversion of glucose and xylose by a novel yeast, Cystobasidium iriomotense. PLOS One. 2018;13(9):e0202164. https://doi.org/10.1371/journal.pone.0202164
- Wang L, Wang D, Zhang Z, et al. Comparative glucose and xylose coutilization efficiencies of soil-isolated yeast strains identify Cutaneotrichosporon dermatis as a potential producer of lipid. ACS Omega. 2020;5(37):23596-23603. https://doi.org/10.1021/acsomega.0c02089
- Gadanho M, Sampaio JP. Occurrence and diversity of yeasts in the mid-atlantic ridge hydrothermal fields near the Azores Archipelago. Microb Ecol. 2005;50(3):408-417. https://doi.org/10.1007/s00248-005-0195-y
- Liu X-Z, Wang Q-M, Goker M, et al. Towards an integrated phylogenetic classification of the tremellomycetes. Stud Mycol. 2015;81:85-147. https://doi.org/10.1016/j.simyco.2015.12.001
- do Espirito Santo EPT, Monteiro RC, da Costa ARF, et al. Molecular identification, genotyping, phenotyping, and antifungal susceptibilities of medically important Trichosporon, Apiotrichum, and Cutaneotrichosporon species. Mycopathologia. 2019;185:307-317.
- Pagani DM, Heidrich D, Paulino GVB, et al. Susceptibility to antifungal agents and enzymatic activity of Candida haemulonii and Cutaneotrichosporon dermatis isolated from soft corals on the Brazilian reefs. Arch Microbiol. 2016;198(10):963-971. https://doi.org/10.1007/s00203-016-1254-0
- Shu J, Ning P, Guo T, et al. First report of leaf spot caused by Colletotrichum fructicola and C. siamense on Zizyphus mauritiana in Guangxi, China. Plant Dis. 2020;104(12):3256-3256.
- Chai AL, Zhao Q, Li XJ, et al. First report of cercospora leaf spot caused by Cercospora cf. flagellaris on okra in China. Plant Dis. 2021;105(7):2018. https://doi.org/10.1094/PDIS-10-20-2155-PDN
- Sarnecka AK, Nawrat D, Piwowar M, et al. DNA extraction from FFPE tissue samples - a comparison of three procedures. Contemp Oncol. 2019;23(1):52-58. https://doi.org/10.5114/wo.2019.83875
- Das P, Pandey P, Harishankar A, et al. A high yield DNA extraction method for medically important candida species: a comparison of manual versus QIAcube-based automated system. Indian J Med Microbiol. 2016;34(4):533-535. https://doi.org/10.4103/0255-0857.195360
- Malentacchi F, Ciniselli CM, Pazzagli M, et al. Influence of pre-analytical procedures on genomic DNA integrity in blood samples: the SPIDIA experience. Clin Chim Acta. 2015;440:205-210. https://doi.org/10.1016/j.cca.2014.12.004
- Nasiri H, Forouzandeh M, Rasaee MJ, et al. Modified salting-out method: high-yield, high-quality genomic DNA extraction from whole blood using laundry detergent. J Clin Lab Anal. 2005;19(6):229-232. https://doi.org/10.1002/jcla.20083
- Lang J, Zhu R, Sun X, et al. Evaluation of the MGISEQ-2000 sequencing platform for Illumina target capture sequencing libraries. Front Genet. 2021;12:730519. https://doi.org/10.3389/fgene.2021.730519
- Kong N, Ng W, Thao K, et al. Automation of PacBio SMRTbell NGS library preparation for bacterial genome sequencing. Stand Genomic Sci. 2017;12:27. https://doi.org/10.1186/s40793-017-0239-1
- Zhang L-L, Huang W, Zhang Y-Y, et al. Genomic and transcriptomic study for screening genes involved in the limonene biotransformation of Penicillium digitatum DSM 62840. Front Microbiol. 2020;11:744. https://doi.org/10.3389/fmicb.2020.00744
- Bickhart DM, McClure JC, Schnabel RD, et al. Symposium review: advances in sequencing technology herald a new frontier in cattle genomics and genome-enabled selection. J Dairy Sci. 2020;103(6):5278-5290. https://doi.org/10.3168/jds.2019-17693
- Liu L, Li Y, Li S, et al. Comparison of next-generation sequencing systems. J Biomed Biotechnol. 2012;2012:251364. https://doi.org/10.1155/2012/251364
- Yoshinaga Y, Daum C, He G, et al. Genome sequencing. Methods Mol Biol. 2018;1775:37-52. https://doi.org/10.1007/978-1-4939-7804-5_4
- Takashima M, Sriswasdi S, Manabe R-I, et al. A trichosporonales genome tree based on 27 haploid and three evolutionarily conserved 'natural' hybrid genomes. Yeast. 2018;35(1):99-111. https://doi.org/10.1002/yea.3284
- Close D, Ojumu J. Draft genome sequence of the oleaginous yeast Cryptococcus curvatus ATCC 20509. Genome Announc. 2016;4(6):e01235-16.
- Sun S, Coelho MA, Heitman J, et al. Convergent evolution of linked mating-type loci in basidiomycete fungi. PLOS Genet. 2019;15(9):e1008365. https://doi.org/10.1371/journal.pgen.1008365
- Hofmeyer T, Hackenschmidt S, Nadler F, et al. Draft genome sequence of Cutaneotrichosporon curvatus DSM 101032 (formerly Cryptococcus curvatus), an oleaginous yeast producing polyunsaturated fatty acids. Genome Announc. 2016;4(3):e00362-16.
- Alva A, Sabido-Ramos A, Escalante A, et al. New insights into transport capability of sugars and its impact on growth from novel mutants of Escherichia coli. Appl Microbiol Biotechnol. 2020;104(4):1463-1479. https://doi.org/10.1007/s00253-019-10335-x
- Sharma NK, Behera S, Arora R, et al. Xylose transport in yeast for lignocellulosic ethanol production: current status. J Biosci Bioeng. 2018;125(3):259-267. https://doi.org/10.1016/j.jbiosc.2017.10.006
- Vasylyshyn R, Kurylenko O, Ruchala J, et al. Engineering of sugar transporters for improvement of xylose utilization during high-temperature alcoholic fermentation in Ogataea polymorpha yeast. Microb Cell Fact. 2020;19(1):96. https://doi.org/10.1186/s12934-020-01354-9
- Zhang B, Zhang J, Wang D, et al. Simultaneous fermentation of glucose and xylose at elevated temperatures co-produces ethanol and xylitol through overexpression of a xylose-specific transporter in engineered Kluyveromyces marxianus. Bioresour Technol. 2016;216:227-237. https://doi.org/10.1016/j.biortech.2016.05.068
- Runquist D, Fonseca C, Radstrom P, et al. Expression of the Gxf1 transporter from Candida intermedia improves fermentation performance in recombinant xylose-utilizing Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2009;82(1):123-130. https://doi.org/10.1007/s00253-008-1773-y
- Young E, Poucher A, Comer A, et al. Functional survey for heterologous sugar transport proteins, using Saccharomyces cerevisiae as a host. Appl Environ Microbiol. 2011;77(10):3311-3319. https://doi.org/10.1128/AEM.02651-10
- Wang X, Goh E-B, Beller HR, et al. Engineering E. coli for simultaneous glucose-xylose utilization during methyl ketone production. Microb Cell Fact. 2018;17(1):12. https://doi.org/10.1186/s12934-018-0862-6
- Hua Y, Wang J, Zhu Y, et al. Release of glucose repression on xylose utilization in Kluyveromyces marxianus to enhance glucose-xylose co-utilization and xylitol production from corncob hydrolysate. Microb Cell Fact. 2019;18(1):24. https://doi.org/10.1186/s12934-019-1068-2
- Abe K, Uchida K. Correlation between depression of catabolite control of xylose metabolism and a defect in the phosphoenolpyruvate: mannose phosphotransferase system in Pediococcus halophilus. J Bacteriol. 1989;171(4):1793-1800. https://doi.org/10.1128/jb.171.4.1793-1800.1989
- Khunnonkwao P, Jantama SS, Kanchanatawee S, et al. Re-engineering Escherichia coli KJ122 to enhance the utilization of xylose and xylose/glucose mixture for efficient succinate production in mineral salt medium. Appl Microbiol Biotechnol. 2018;102(1):127-141. https://doi.org/10.1007/s00253-017-8580-2
- Ranade S, Zhang Y, Kaplan M, et al. Metabolic engineering and comparative performance studies of Synechocystis sp. PCC 6803 strains for effective utilization of xylose. Front Microbiol. 2015;6:1484. https://doi.org/10.3389/fmicb.2015.01484
- Chen L, Zhang Z, Hoshino A, et al. NADPH production by the oxidative pentose-phosphate pathway supports folate metabolism. Nat Metab. 2019;1:404-415. https://doi.org/10.1038/s42255-019-0043-x
- Minard KI, McAlister-Henn L. Sources of NADPH in yeast vary with carbon source. J Biol Chem. 2005;280(48):39890-39896. https://doi.org/10.1074/jbc.M509461200
- Choi JW, Da Silva NA. Improving polyketide and fatty acid synthesis by engineering of the yeast acetyl-CoA carboxylase. J Biotechnol. 2014;187:56-59. https://doi.org/10.1016/j.jbiotec.2014.07.430
- Montoya AM, Luna-Rodriguez CE, Bonifaz A, et al. Physiological characterization and molecular identification of some rare yeast species causing onychomycosis. J Mycol Med. 2021;31(2):101121. https://doi.org/10.1016/j.mycmed.2021.101121
- Gallagher MD, Chen-Plotkin AS. The Post-GWAS era: from association to function. Am J Hum Genet. 2018;102(5):717-730. https://doi.org/10.1016/j.ajhg.2018.04.002
- Price MN, Arkin AP. Curated BLAST for genomes. mSystems. 2019;4(2):e00072-19.
- Pace J, Youens-Clark K, Freeman C, et al. PuMA: a papillomavirus genome annotation tool. Virus Evol. 2020;6(2):veaa068. https://doi.org/10.1093/ve/veaa068
- Magrini V, Gao X, Rosa BA, et al. Improving eukaryotic genome annotation using single molecule mRNA sequencing. BMC Genomics. 2018;19(1):172. https://doi.org/10.1186/s12864-018-4555-7
- Watson JD, Laskowski RA, Thornton JM, et al. Predicting protein function from sequence and structural data. Curr Opin Struct Biol. 2005;15(3):275-284. https://doi.org/10.1016/j.sbi.2005.04.003
- Skov LK, Mirza O, Henriksen A, et al. Amylosucrase, a glucan-synthesizing enzyme from the alpha-amylase family. J Biol Chem. 2001;276(27):25273-25278. https://doi.org/10.1074/jbc.M010998200
- Dietmann S,PJ, Notredame C, Heger A, et al. A fully automatic evolutionary classification of protein folds: dali domain dictionary version 3. Nucleic Acids Res. 2001;29(1):55-57. https://doi.org/10.1093/nar/29.1.55
- Krissinel E, Henrick K. Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr D Biol Crystallogr. 2004;60(12):2256-2268. https://doi.org/10.1107/S0907444904026460
- Harrison A, Pearl F, Sillitoe I, et al. Recognizing the fold of a protein structure. Bioinformatics. 2003;19(14):1748-1759. https://doi.org/10.1093/bioinformatics/btg240
- Binkowski TA, Freeman P, Liang J, et al. pvSOAR: detecting similar surface patterns of pocket and void surfaces of amino acid residues on proteins. Nucleic Acids Res. 2004;32:W555-8. https://doi.org/10.1093/nar/gkh390
- Ra L. SURFNET: a program for visualizing molecular surfaces, cavities, and intermolecular interactions. J Mol Graph. 1995;13(5):323-330. https://doi.org/10.1016/0263-7855(95)00073-9
- Glaser F, Morris RJ, Najmanovich RJ, et al. A method for localizing ligand binding pockets in protein structures. Proteins. 2006;62(2):479-488. https://doi.org/10.1002/prot.20769
- Innis CA, Anand AP, Sowdhamini R, et al. Prediction of functional sites in proteins using conserved functional group analysis. J Mol Biol. 2004;337(4):1053-1068. https://doi.org/10.1016/j.jmb.2004.01.053
- Wilkins A, Erdin S, Lua R, et al. Evolutionary trace for prediction and redesign of protein functional sites. Methods Mol Biol. 2012;819:29-42. https://doi.org/10.1007/978-1-61779-465-0_3
- Pillai-Kastoori L, Schutz-Geschwender AR, Harford JA, et al. A systematic approach to quantitative western blot analysis. Anal Biochem. 2020;593:113608. https://doi.org/10.1016/j.ab.2020.113608
- Atout S, Shurrab S, Loveridge C, et al. Evaluation of the suitability of RNAscope as a technique to measure gene expression in clinical diagnostics: a systematic review. Mol Diagn Ther. 2022;26(1):19-37., https://doi.org/10.1007/s40291-021-00570-2
- Aslam B, Basit M, Nisar MA, et al. Proteomics: technologies and their applications. J Chromatogr Sci. 2017;55(2):182-196. https://doi.org/10.1093/chromsci/bmw167
- Pappireddi N, Martin L, Wuhr M, et al. A review on quantitative multiplexed proteomics. Chembiochem. 2019;20(10):1210-1224. https://doi.org/10.1002/cbic.201800650