과제정보
We thank Hyun-Joo Nho and Seol-Hwa Jang for technical support.
참고문헌
- Honegger R. Functional aspects of the lichen symbiosis. Annu Rev Plant Physiol Plant Mol Biol. 1991;42(1):553-578. https://doi.org/10.1146/annurev.pp.42.060191.003005
- Hawksworth D. The variety of fungal-algal symbioses, their evolutionary significance, and the nature of lichens. Bot J Linn Soc. 1988;96(1):3-20. https://doi.org/10.1111/j.1095-8339.1988.tb00623.x
- Gauslaa Y, Solhaug KA. Fungal melanins as a sun screen for symbiotic green algae in the lichen Lobaria pulmonaria. Oecologia. 2001;126(4):462-471. https://doi.org/10.1007/s004420000541
- Kranner I, Cram WJ, Zorn M, et al. Antioxidants and photoprotection in a lichen as compared with its isolated symbiotic partners. Proc Natl Acad Sci U S A. 2005;102(8):3141-3146. https://doi.org/10.1073/pnas.0407716102
- Webber EE. Bluegreen algae from a Massachusetts salt marsh. Bull Torrey Bot Club. 1967;94(2):99-106. https://doi.org/10.2307/2483706
- Ahmadjian V. Trebouxia: reflections on a perplexing and controversial lichen photobiont. In: Seckbach J, editor. Symbiosis. Dordrecht: Springer; 2001. p. 373-383.
- Goward T, McCune B, Meidinger D. The lichens of British Columbia. Illustrated keys part 1. Victoria, BC: Ministry of Forests Research Program; 1994. p. 1-181.
- Grube M, Berg G. Microbial consortia of bacteria and fungi with focus on the lichen symbiosis. Fungal Biol Rev. 2009;23(3):72-85. https://doi.org/10.1016/j.fbr.2009.10.001
- Suryanarayanan T, Thirunavukkarasu N, Hariharan G, et al. Occurrence of non-obligate microfungi inside lichen thalli. SYDOWIA-HORN. 2005;57:120.
- Spribille T, Tuovinen V, Resl P, et al. Basidiomycete yeasts in the cortex of ascomycete macrolichens. Science. 2016;353(6298):488-492. https://doi.org/10.1126/science.aaf8287
- Lutzoni F, Miadlikowska J. Lichens. Curr Biol. 2009;19(13):R502-R3. https://doi.org/10.1016/j.cub.2009.04.034
- Suryanarayanan TS, Thirunavukkarasu N. Endolichenic fungi: the lesser known fungal associates of lichens. Mycology. 2017;8(3):189-196. https://doi.org/10.1080/21501203.2017.1352048
- Arnold AE, Miadlikowska J, Higgins KL, et al. A phylogenetic estimation of trophic transition networks for ascomycetous fungi: are lichens cradles of symbiotrophic fungal diversification? Syst Biol. 2009;58(3):283-297. https://doi.org/10.1093/sysbio/syp001
- U'ren JM, Lutzoni F, Miadlikowska J, et al. Community analysis reveals close affinities between endophytic and endolichenic fungi in mosses and lichens. Microb Ecol. 2010;60(2):340-353. https://doi.org/10.1007/s00248-010-9698-2
- Honegger R, Axe L, Edwards D. Bacterial epibionts and endolichenic actinobacteria and fungi in the lower Devonian lichen Chlorolichenomycites salopensis. Fungal Biol. 2013;117(7-8):512-518. https://doi.org/10.1016/j.funbio.2013.05.003
- Agrawal S, Deshmukh SK, Reddy MS, et al. Endolichenic fungi: a hidden source of bioactive metabolites. S Afr J Bot. 2020;134:163-186. https://doi.org/10.1016/j.sajb.2019.12.008
- Kellogg JJ, Raja HA. Endolichenic fungi: a new source of rich bioactive secondary metabolites on the horizon. Phytochem Rev. 2017;16(2):271-293. https://doi.org/10.1007/s11101-016-9473-1
- Zhang K, Ren J, Ge M, et al. Mono- and bis-furanone derivatives from the endolichenic fungus Peziza sp. Fitoterapia. 2014;92:79-84. https://doi.org/10.1016/j.fitote.2013.10.011
- Li X-B, Li L, Zhu R-X, et al. Tetramic acids and pyridone alkaloids from the endolichenic fungus tolypocladium cylindrosporum. J Nat Prod. 2015;78(9):2155-2160. https://doi.org/10.1021/np501018w
- Dou Y, Wang X, Jiang D, et al. Metabolites from Aspergillus versicolor, an endolichenic fungus from the lichen Lobaria retigera. Drug Discov Ther. 2014;8(2):84-88. https://doi.org/10.5582/ddt.8.84
- Ding G, Li Y, Fu S, et al. Ambuic acid and torreyanic acid derivatives from the endolichenic fungus Pestalotiopsis sp. J Nat Prod. 2009;72(1):182-186. https://doi.org/10.1021/np800733y
- Li XB, Zhou YH, Zhu RX, et al. Identification and biological evaluation of secondary metabolites from the endolichenic fungus Aspergillus versicolor. Chem Biodivers. 2015;12(4):575-592. https://doi.org/10.1002/cbdv.201400146
- Wu W, Dai H, Bao L, et al. Isolation and structural elucidation of proline-containing cyclopentapeptides from an endolichenic Xylaria sp. J Nat Prod. 2011;74(5):1303-1308. https://doi.org/10.1021/np100909y
- Basnet BB, Liu L, Chen B, et al. Four new cytotoxic arborinane-type triterpenes from the endolichenic fungus Myrothecium inundatum. Planta Med. 2019;85(9-10):701-707. https://doi.org/10.1055/a-0855-4051
- Basnet BB, Chen B, Suleimen YM, et al. Cytotoxic secondary metabolites from the endolichenic fungus Hypoxylon fuscum. Planta Med. 2019;85(13):1088-1097. https://doi.org/10.1055/a-0957-3567
- Wang Q-X, Bao L, Yang X-L, et al. Tricycloalternarenes F-H: three new mixed terpenoids produced by an endolichenic fungus Ulocladium sp. using OSMAC method. Fitoterapia. 2013;85:8-13. https://doi.org/10.1016/j.fitote.2012.12.029
- Padhi S, Masi M, Panda SK, et al. Antimicrobial secondary metabolites of an endolichenic Aspergillus niger isolated from lichen thallus of Parmotrema ravum. Nat Prod Res. 2020;34(18):2573-2580. https://doi.org/10.1080/14786419.2018.1544982
- Chen M, Wang R, Zhao W, et al. Isocoumarindole A, a chlorinated isocoumarin and indole alkaloid hybrid metabolite from an endolichenic fungus Aspergillus sp. Org Lett. 2019;21(5):1530-1533. https://doi.org/10.1021/acs.orglett.9b00385
- Kim JW, Ko W, Kim E, et al. Anti-inflammatory phomalichenones from an endolichenic fungus Phoma sp. J Antibiot (Tokyo). 2018;71(8):753-756. https://doi.org/10.1038/s41429-018-0058-7
- Wang Q-X, Bao L, Yang X-L, et al. Polyketides with antimicrobial activity from the solid culture of an endolichenic fungus Ulocladium sp. Fitoterapia. 2012;83(1):209-214. https://doi.org/10.1016/j.fitote.2011.10.013
- Grube M, Cernava T, Soh J, et al. Exploring functional contexts of symbiotic sustain within lichenassociated bacteria by comparative omics. Isme J. 2015;9(2):412-424. https://doi.org/10.1038/ismej.2014.138
- Lawrey JD, Diederich P. Lichenicolous fungi: interactions, evolution, and biodiversity. The Bryologist. 2003;106(1):80-120.2.0.CO;2] https://doi.org/10.1639/0007-2745(2003)106[0080:LFIEAB]2.0.CO;2
- Fernandez-Mendoza F, Fleischhacker A, Kopun T, et al. ITS1 metabarcoding highlights low specificity of lichen mycobiomes at a local scale. Mol Ecol. 2017;26(18):4811-4830. https://doi.org/10.1111/mec.14244
- Oh S-Y, Yang JH, Woo J-J, et al. Diversity and distribution patterns of endolichenic fungi in Jeju Island, South Korea. Sustainability. 2020;12(9):3769. https://doi.org/10.3390/su12093769
- U'Ren JM, Lutzoni F, Miadlikowska J, et al. Host and geographic structure of endophytic and endolichenic fungi at a continental scale. Am J Bot. 2012;99(5):898-914. https://doi.org/10.3732/ajb.1100459
- Zhang T, Wei X-L, Wei Y-Z, et al. Diversity and distribution of cultured endolichenic fungi in the Ny-Alesund region, svalbard (high arctic). Extremophiles. 2016;20(4):461-470. https://doi.org/10.1007/s00792-016-0836-8
- Park CH, Kim KM, Elvebakk A, et al. Algal and fungal diversity in Antarctic lichens. J Eukaryot Microbiol. 2015;62(2):196-205. https://doi.org/10.1111/jeu.12159
- Banchi E, Stankovic D, Fernandez-Mendoza F, et al. ITS2 metabarcoding analysis complements lichen mycobiome diversity data. Mycol Prog. 2018;17(9):1049-1066. https://doi.org/10.1007/s11557-018-1415-4
- U'Ren JM, Miadlikowska J, Zimmerman NB, et al. Contributions of North American Endophytes to the phylogeny, ecology, and taxonomy of Xylariaceae (Sordariomycetes, Ascomycota). Mol Phylogenet Evol. 2016;98:210-232. https://doi.org/10.1016/j.ympev.2016.02.010
- Yang JH, Oh S-Y, Kim W, et al. Effect of isolation conditions on diversity of endolichenic fungal communities from a foliose lichen, Parmotrema tinctorum. JoF. 2021;7(5):335. https://doi.org/10.3390/jof7050335
- Rajulu MBG, Thirunavukkarasu N, Kumar SS, et al. Endolichenic fungal diversity associated with some lichens of the Western ghats. Planta Med. 2020;86(13-14):960-966. https://doi.org/10.1055/a-1045-1989
- Suryanarayanan TS, Govindarajulu M, Rajamani T, et al. Endolichenic fungi in lichens of Champawat District, Uttarakhand, Northern India. Mycol Progress. 2017;16(3):205-211. https://doi.org/10.1007/s11557-016-1268-7
- Chagnon P-L, U'Ren JM, Miadlikowska J, et al. Interaction type influences ecological network structure more than local abiotic conditions: evidence from endophytic and endolichenic fungi at a continental scale. Oecologia. 2016;180(1):181-191. https://doi.org/10.1007/s00442-015-3457-5
- U'Ren JM, Riddle JM, Monacell JT, et al. Tissue storage and primer selection influence pyrosequencing-based inferences of diversity and community composition of endolichenic and endophytic fungi . Mol Ecol Resour. 2014;14(5):1032-1048. https://doi.org/10.1111/1755-0998.12252
- Blaxter M, Mann J, Chapman T, et al. Defining operational taxonomic units using DNA barcode data. Philos Trans R Soc Lond B Biol Sci. 2005;360(1462):1935-1943. https://doi.org/10.1098/rstb.2005.1725
- Bold HC. The morphology of Chlamydomonas chlamydogama, sp. nov. Bull Torrey Bot Club. 1949;76(2):101-108. https://doi.org/10.2307/2482218
- Lacap D, Hyde K, Liew E. An evaluation of the fungal 'morphotype' concept based on ribosomal DNA sequences. Fungal Diver. 2003;12:53-66.
- White TJ, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. Vol. 18. St. Louis: Elsevier Science; 1990. p. 315-322.
- Hall T. BioEdit version 7.0. 0. Distributed by the author. 2004. www.mbio.ncsu.edu/BioEdit/bioedit.html.
- Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870-1874. https://doi.org/10.1093/molbev/msw054
- Tedersoo L, Lindahl B. Fungal identification biases in microbiome projects. Environ Microbiol Rep. 2016;8(5):774-779. https://doi.org/10.1111/1758-2229.12438
- Bates ST, Ahrendt S, Bik HM, et al. Meeting report: fungal ITS workshop (October 2012). Stand Genomic Sci. 2013;8(1):118-123. https://doi.org/10.4056/sigs.3737409
- Bolyen E, Rideout JR, Dillon MR, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37(8):852-857. https://doi.org/10.1038/s41587-019-0209-9
- Callahan BJ, McMurdie PJ, Rosen MJ, et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13(7):581-583. https://doi.org/10.1038/nmeth.3869
- Rognes T, Flouri T, Nichols B, et al. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:e2584. https://doi.org/10.7717/peerj.2584
- Abarenkov K, Henrik Nilsson R, Larsson KH, et al. The UNITE database for molecular identification of fungi-recent updates and future perspectives. New Phytol. 2010;186(2):281-285. https://doi.org/10.1111/j.1469-8137.2009.03160.x
- TeamRC. R: a language and environment for statistical computing. 2013. https://www.gbif.org/tool/81287/r-a-language-and-environment-for-statistical-computing.
- Allaire J. RStudio: integrated development environment for R. Vol. 770. Boston (MA): RStudio; 2012. p. 165-171.
- McMurdie PJ, Holmes S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8(4):e61217. https://doi.org/10.1371/journal.pone.0061217
- Oksanen J, Blanchet FG, Kindt R, et al. Vegan: community ecology package. R package version 1.17-4. 2010. http://CRAN.R-project.org/package=vegan.
- Beals EW. Bray-Curtis ordination: an effective strategy for analysis of multivariate ecological data. Adv Ecol Res. 1984;14:1-55. https://doi.org/10.1016/S0065-2504(08)60168-3
- Royston JP. An extension of Shapiro and Wilk's W test for normality to large samples. J R Stat Soc Ser C (Appl Stat). 1982;31:115-124.
- Nachar N. The Mann-Whitney U: a test for assessing whether two independent samples come from the same distribution. TQMP. 2008;4(1):13-20. https://doi.org/10.20982/tqmp.04.1.p013
- Wickham H. ggplot2: elegant graphics for data analysis. Cham: Springer; 2016.
- Kolde R, Kolde MR. Package 'pheatmap'. R Package. 2015;1:790.
- Hsieh T, Ma K, Chao A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol Evol. 2016;7(12):1451-1456. https://doi.org/10.1111/2041-210X.12613
- Porazinska DL, Giblin-Davis RM, Faller L, et al. Evaluating high-throughput sequencing as a method for metagenomic analysis of nematode diversity . Mol Ecol Resour. 2009;9(6):1439-1450. https://doi.org/10.1111/j.1755-0998.2009.02611.x
- Hamad I, Ranque S, Azhar EI, et al. Culturomics and amplicon-based metagenomic approaches for the study of fungal population in human gut microbiota. Sci Rep. 2017;7(1):1-8. https://doi.org/10.1038/s41598-016-0028-x
- Diakite A, Dubourg G, Dione N, et al. Extensive culturomics of 8 healthy samples enhances metagenomics efficiency. PLoS One. 2019;14(10):e0223543. https://doi.org/10.1371/journal.pone.0223543
- Yokouchi H, Fukuoka Y, Mukoyama D, et al. Whole-metagenome amplification of a microbial community associated with scleractinian coral by multiple displacement amplification using phi29 polymerase. Environ Microbiol. 2006;8(7):1155-1163. https://doi.org/10.1111/j.1462-2920.2006.01005.x
- Wang XC, Liu C, Huang L, et al. ITS1: a DNA barcode better than ITS2 in eukaryotes? Mol Ecol Resour. 2015;15(3):573-586. https://doi.org/10.1111/1755-0998.12325
- Hoggard M, Vesty A, Wong G, et al. Characterizing the human mycobiota: a comparison of small subunit rRNA, ITS1, ITS2, and large subunit rRNA genomic targets. Front Microbiol. 2018;9:2208. https://doi.org/10.3389/fmicb.2018.02208
- Muggia L, Kopun T, Grube M. Effects of growth media on the diversity of culturable fungi from lichens. Molecules. 2017;22(5):824. https://doi.org/10.3390/molecules22050824
- Serap A, Martin-Sanchez PM, Gorbushina A. Roof-inhabiting cousins of rock-inhabiting fungi: novel melanized microcolonial fungal species from photocatalytically reactive subaerial surfaces. Life. 2018;8(3):30. https://doi.org/10.3390/life8030030
- Ruibal C, Gueidan C, Selbmann L, et al. Phylogeny of rock-inhabiting fungi related to dothideomycetes. Stud Mycol. 2009;64:123-133. https://doi.org/10.3114/sim.2009.64.06
- Halama P, Van Haluwin C. Antifungal activity of lichen extracts and lichenic acids. BioControl. 2004;49(1):95-107. https://doi.org/10.1023/b:bico.0000009378.31023.ba
- Chauhan R, Abraham J. In vitro antimicrobial potential of the lichen Parmotrema sp. extracts against various pathogens. Iran J Basic Med Sci. 2013;16(7):882-885.
- Derman E, Ergener D, Kani I. Static options replication. J Deriv. 1995;2(4):78-95 https://doi.org/10.3905/jod.1995.407927
- Carpenter SR. Replication and treatment strength in whole-lake experiments. Ecology. 1989;70(2):453-463. https://doi.org/10.2307/1937550
- Hale ME, Jr. Studies on lichen growth rate and succession. Bull Torrey Bot Club. 1959;86(2):126-129. https://doi.org/10.2307/2482993
- Armstrong RA. Growth curve of the lichen Rhizocarpon geographicum. New Phytol. 1983;94(4):619-622. https://doi.org/10.1111/j.1469-8137.1983.tb04870.x