DOI QR코드

DOI QR Code

Endolichenic Fungal Community Analysis by Pure Culture Isolation and Metabarcoding: A Case Study of Parmotrema tinctorum

  • Yang, Ji Ho (Department of Biology, Sunchon National University) ;
  • Oh, Seung-Yoon (Department of Biology and Chemistry, Changwon National University) ;
  • Kim, Wonyong (Korean Lichen Research Institute, Sunchon National University) ;
  • Hur, Jae-Seoun (Korean Lichen Research Institute, Sunchon National University)
  • 투고 : 2021.11.03
  • 심사 : 2022.02.06
  • 발행 : 2022.02.28

초록

Lichen is a symbiotic mutualism of mycobiont and photobiont that harbors diverse organisms including endolichenic fungi (ELF). Despite the taxonomic and ecological significance of ELF, no comparative investigation of an ELF community involving isolation of a pure culture and high-throughput sequencing has been conducted. Thus, we analyzed the ELF community in Parmotrema tinctorum by culture and metabarcoding. Alpha diversity of the ELF community was notably greater in metabarcoding than in culture-based analysis. Taxonomic proportions of the ELF community estimated by metabarcoding and by culture analyses showed remarkable differences: Sordariomycetes was the most dominant fungal class in culture-based analysis, while Dothideomycetes was the most abundant in metabarcoding analysis. Thirty-seven operational taxonomic units (OTUs) were commonly observed by culture-and metabarcoding-based analyses but relative abundances differed: most of common OTUs were underrepresented in metabarcoding. The ELF community differed in lichen segments and thalli in metabarcoding analysis. Dissimilarity of ELF community intra lichen thallus increased with thallus segment distance; inter-thallus ELF community dissimilarity was significantly greater than intra-thallus ELF community dissimilarity. Finally, we tested how many fungal sequence reads would be needed to ELF diversity with relationship assays between numbers of lichen segments and saturation patterns of OTU richness and sample coverage. At least 6000 sequence reads per lichen thallus were sufficient for prediction of overall ELF community diversity and 50,000 reads per thallus were enough to observe rare taxa of ELF.

키워드

과제정보

We thank Hyun-Joo Nho and Seol-Hwa Jang for technical support.

참고문헌

  1. Honegger R. Functional aspects of the lichen symbiosis. Annu Rev Plant Physiol Plant Mol Biol. 1991;42(1):553-578. https://doi.org/10.1146/annurev.pp.42.060191.003005
  2. Hawksworth D. The variety of fungal-algal symbioses, their evolutionary significance, and the nature of lichens. Bot J Linn Soc. 1988;96(1):3-20. https://doi.org/10.1111/j.1095-8339.1988.tb00623.x
  3. Gauslaa Y, Solhaug KA. Fungal melanins as a sun screen for symbiotic green algae in the lichen Lobaria pulmonaria. Oecologia. 2001;126(4):462-471. https://doi.org/10.1007/s004420000541
  4. Kranner I, Cram WJ, Zorn M, et al. Antioxidants and photoprotection in a lichen as compared with its isolated symbiotic partners. Proc Natl Acad Sci U S A. 2005;102(8):3141-3146. https://doi.org/10.1073/pnas.0407716102
  5. Webber EE. Bluegreen algae from a Massachusetts salt marsh. Bull Torrey Bot Club. 1967;94(2):99-106. https://doi.org/10.2307/2483706
  6. Ahmadjian V. Trebouxia: reflections on a perplexing and controversial lichen photobiont. In: Seckbach J, editor. Symbiosis. Dordrecht: Springer; 2001. p. 373-383.
  7. Goward T, McCune B, Meidinger D. The lichens of British Columbia. Illustrated keys part 1. Victoria, BC: Ministry of Forests Research Program; 1994. p. 1-181.
  8. Grube M, Berg G. Microbial consortia of bacteria and fungi with focus on the lichen symbiosis. Fungal Biol Rev. 2009;23(3):72-85. https://doi.org/10.1016/j.fbr.2009.10.001
  9. Suryanarayanan T, Thirunavukkarasu N, Hariharan G, et al. Occurrence of non-obligate microfungi inside lichen thalli. SYDOWIA-HORN. 2005;57:120.
  10. Spribille T, Tuovinen V, Resl P, et al. Basidiomycete yeasts in the cortex of ascomycete macrolichens. Science. 2016;353(6298):488-492. https://doi.org/10.1126/science.aaf8287
  11. Lutzoni F, Miadlikowska J. Lichens. Curr Biol. 2009;19(13):R502-R3. https://doi.org/10.1016/j.cub.2009.04.034
  12. Suryanarayanan TS, Thirunavukkarasu N. Endolichenic fungi: the lesser known fungal associates of lichens. Mycology. 2017;8(3):189-196. https://doi.org/10.1080/21501203.2017.1352048
  13. Arnold AE, Miadlikowska J, Higgins KL, et al. A phylogenetic estimation of trophic transition networks for ascomycetous fungi: are lichens cradles of symbiotrophic fungal diversification? Syst Biol. 2009;58(3):283-297. https://doi.org/10.1093/sysbio/syp001
  14. U'ren JM, Lutzoni F, Miadlikowska J, et al. Community analysis reveals close affinities between endophytic and endolichenic fungi in mosses and lichens. Microb Ecol. 2010;60(2):340-353. https://doi.org/10.1007/s00248-010-9698-2
  15. Honegger R, Axe L, Edwards D. Bacterial epibionts and endolichenic actinobacteria and fungi in the lower Devonian lichen Chlorolichenomycites salopensis. Fungal Biol. 2013;117(7-8):512-518. https://doi.org/10.1016/j.funbio.2013.05.003
  16. Agrawal S, Deshmukh SK, Reddy MS, et al. Endolichenic fungi: a hidden source of bioactive metabolites. S Afr J Bot. 2020;134:163-186. https://doi.org/10.1016/j.sajb.2019.12.008
  17. Kellogg JJ, Raja HA. Endolichenic fungi: a new source of rich bioactive secondary metabolites on the horizon. Phytochem Rev. 2017;16(2):271-293. https://doi.org/10.1007/s11101-016-9473-1
  18. Zhang K, Ren J, Ge M, et al. Mono- and bis-furanone derivatives from the endolichenic fungus Peziza sp. Fitoterapia. 2014;92:79-84. https://doi.org/10.1016/j.fitote.2013.10.011
  19. Li X-B, Li L, Zhu R-X, et al. Tetramic acids and pyridone alkaloids from the endolichenic fungus tolypocladium cylindrosporum. J Nat Prod. 2015;78(9):2155-2160. https://doi.org/10.1021/np501018w
  20. Dou Y, Wang X, Jiang D, et al. Metabolites from Aspergillus versicolor, an endolichenic fungus from the lichen Lobaria retigera. Drug Discov Ther. 2014;8(2):84-88. https://doi.org/10.5582/ddt.8.84
  21. Ding G, Li Y, Fu S, et al. Ambuic acid and torreyanic acid derivatives from the endolichenic fungus Pestalotiopsis sp. J Nat Prod. 2009;72(1):182-186. https://doi.org/10.1021/np800733y
  22. Li XB, Zhou YH, Zhu RX, et al. Identification and biological evaluation of secondary metabolites from the endolichenic fungus Aspergillus versicolor. Chem Biodivers. 2015;12(4):575-592. https://doi.org/10.1002/cbdv.201400146
  23. Wu W, Dai H, Bao L, et al. Isolation and structural elucidation of proline-containing cyclopentapeptides from an endolichenic Xylaria sp. J Nat Prod. 2011;74(5):1303-1308. https://doi.org/10.1021/np100909y
  24. Basnet BB, Liu L, Chen B, et al. Four new cytotoxic arborinane-type triterpenes from the endolichenic fungus Myrothecium inundatum. Planta Med. 2019;85(9-10):701-707. https://doi.org/10.1055/a-0855-4051
  25. Basnet BB, Chen B, Suleimen YM, et al. Cytotoxic secondary metabolites from the endolichenic fungus Hypoxylon fuscum. Planta Med. 2019;85(13):1088-1097. https://doi.org/10.1055/a-0957-3567
  26. Wang Q-X, Bao L, Yang X-L, et al. Tricycloalternarenes F-H: three new mixed terpenoids produced by an endolichenic fungus Ulocladium sp. using OSMAC method. Fitoterapia. 2013;85:8-13. https://doi.org/10.1016/j.fitote.2012.12.029
  27. Padhi S, Masi M, Panda SK, et al. Antimicrobial secondary metabolites of an endolichenic Aspergillus niger isolated from lichen thallus of Parmotrema ravum. Nat Prod Res. 2020;34(18):2573-2580. https://doi.org/10.1080/14786419.2018.1544982
  28. Chen M, Wang R, Zhao W, et al. Isocoumarindole A, a chlorinated isocoumarin and indole alkaloid hybrid metabolite from an endolichenic fungus Aspergillus sp. Org Lett. 2019;21(5):1530-1533. https://doi.org/10.1021/acs.orglett.9b00385
  29. Kim JW, Ko W, Kim E, et al. Anti-inflammatory phomalichenones from an endolichenic fungus Phoma sp. J Antibiot (Tokyo). 2018;71(8):753-756. https://doi.org/10.1038/s41429-018-0058-7
  30. Wang Q-X, Bao L, Yang X-L, et al. Polyketides with antimicrobial activity from the solid culture of an endolichenic fungus Ulocladium sp. Fitoterapia. 2012;83(1):209-214. https://doi.org/10.1016/j.fitote.2011.10.013
  31. Grube M, Cernava T, Soh J, et al. Exploring functional contexts of symbiotic sustain within lichenassociated bacteria by comparative omics. Isme J. 2015;9(2):412-424. https://doi.org/10.1038/ismej.2014.138
  32. Lawrey JD, Diederich P. Lichenicolous fungi: interactions, evolution, and biodiversity. The Bryologist. 2003;106(1):80-120.2.0.CO;2] https://doi.org/10.1639/0007-2745(2003)106[0080:LFIEAB]2.0.CO;2
  33. Fernandez-Mendoza F, Fleischhacker A, Kopun T, et al. ITS1 metabarcoding highlights low specificity of lichen mycobiomes at a local scale. Mol Ecol. 2017;26(18):4811-4830. https://doi.org/10.1111/mec.14244
  34. Oh S-Y, Yang JH, Woo J-J, et al. Diversity and distribution patterns of endolichenic fungi in Jeju Island, South Korea. Sustainability. 2020;12(9):3769. https://doi.org/10.3390/su12093769
  35. U'Ren JM, Lutzoni F, Miadlikowska J, et al. Host and geographic structure of endophytic and endolichenic fungi at a continental scale. Am J Bot. 2012;99(5):898-914. https://doi.org/10.3732/ajb.1100459
  36. Zhang T, Wei X-L, Wei Y-Z, et al. Diversity and distribution of cultured endolichenic fungi in the Ny-Alesund region, svalbard (high arctic). Extremophiles. 2016;20(4):461-470. https://doi.org/10.1007/s00792-016-0836-8
  37. Park CH, Kim KM, Elvebakk A, et al. Algal and fungal diversity in Antarctic lichens. J Eukaryot Microbiol. 2015;62(2):196-205. https://doi.org/10.1111/jeu.12159
  38. Banchi E, Stankovic D, Fernandez-Mendoza F, et al. ITS2 metabarcoding analysis complements lichen mycobiome diversity data. Mycol Prog. 2018;17(9):1049-1066. https://doi.org/10.1007/s11557-018-1415-4
  39. U'Ren JM, Miadlikowska J, Zimmerman NB, et al. Contributions of North American Endophytes to the phylogeny, ecology, and taxonomy of Xylariaceae (Sordariomycetes, Ascomycota). Mol Phylogenet Evol. 2016;98:210-232. https://doi.org/10.1016/j.ympev.2016.02.010
  40. Yang JH, Oh S-Y, Kim W, et al. Effect of isolation conditions on diversity of endolichenic fungal communities from a foliose lichen, Parmotrema tinctorum. JoF. 2021;7(5):335. https://doi.org/10.3390/jof7050335
  41. Rajulu MBG, Thirunavukkarasu N, Kumar SS, et al. Endolichenic fungal diversity associated with some lichens of the Western ghats. Planta Med. 2020;86(13-14):960-966. https://doi.org/10.1055/a-1045-1989
  42. Suryanarayanan TS, Govindarajulu M, Rajamani T, et al. Endolichenic fungi in lichens of Champawat District, Uttarakhand, Northern India. Mycol Progress. 2017;16(3):205-211. https://doi.org/10.1007/s11557-016-1268-7
  43. Chagnon P-L, U'Ren JM, Miadlikowska J, et al. Interaction type influences ecological network structure more than local abiotic conditions: evidence from endophytic and endolichenic fungi at a continental scale. Oecologia. 2016;180(1):181-191. https://doi.org/10.1007/s00442-015-3457-5
  44. U'Ren JM, Riddle JM, Monacell JT, et al. Tissue storage and primer selection influence pyrosequencing-based inferences of diversity and community composition of endolichenic and endophytic fungi . Mol Ecol Resour. 2014;14(5):1032-1048. https://doi.org/10.1111/1755-0998.12252
  45. Blaxter M, Mann J, Chapman T, et al. Defining operational taxonomic units using DNA barcode data. Philos Trans R Soc Lond B Biol Sci. 2005;360(1462):1935-1943. https://doi.org/10.1098/rstb.2005.1725
  46. Bold HC. The morphology of Chlamydomonas chlamydogama, sp. nov. Bull Torrey Bot Club. 1949;76(2):101-108. https://doi.org/10.2307/2482218
  47. Lacap D, Hyde K, Liew E. An evaluation of the fungal 'morphotype' concept based on ribosomal DNA sequences. Fungal Diver. 2003;12:53-66.
  48. White TJ, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. Vol. 18. St. Louis: Elsevier Science; 1990. p. 315-322.
  49. Hall T. BioEdit version 7.0. 0. Distributed by the author. 2004. www.mbio.ncsu.edu/BioEdit/bioedit.html.
  50. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870-1874. https://doi.org/10.1093/molbev/msw054
  51. Tedersoo L, Lindahl B. Fungal identification biases in microbiome projects. Environ Microbiol Rep. 2016;8(5):774-779. https://doi.org/10.1111/1758-2229.12438
  52. Bates ST, Ahrendt S, Bik HM, et al. Meeting report: fungal ITS workshop (October 2012). Stand Genomic Sci. 2013;8(1):118-123. https://doi.org/10.4056/sigs.3737409
  53. Bolyen E, Rideout JR, Dillon MR, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37(8):852-857. https://doi.org/10.1038/s41587-019-0209-9
  54. Callahan BJ, McMurdie PJ, Rosen MJ, et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13(7):581-583. https://doi.org/10.1038/nmeth.3869
  55. Rognes T, Flouri T, Nichols B, et al. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:e2584. https://doi.org/10.7717/peerj.2584
  56. Abarenkov K, Henrik Nilsson R, Larsson KH, et al. The UNITE database for molecular identification of fungi-recent updates and future perspectives. New Phytol. 2010;186(2):281-285. https://doi.org/10.1111/j.1469-8137.2009.03160.x
  57. TeamRC. R: a language and environment for statistical computing. 2013. https://www.gbif.org/tool/81287/r-a-language-and-environment-for-statistical-computing.
  58. Allaire J. RStudio: integrated development environment for R. Vol. 770. Boston (MA): RStudio; 2012. p. 165-171.
  59. McMurdie PJ, Holmes S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8(4):e61217. https://doi.org/10.1371/journal.pone.0061217
  60. Oksanen J, Blanchet FG, Kindt R, et al. Vegan: community ecology package. R package version 1.17-4. 2010. http://CRAN.R-project.org/package=vegan.
  61. Beals EW. Bray-Curtis ordination: an effective strategy for analysis of multivariate ecological data. Adv Ecol Res. 1984;14:1-55. https://doi.org/10.1016/S0065-2504(08)60168-3
  62. Royston JP. An extension of Shapiro and Wilk's W test for normality to large samples. J R Stat Soc Ser C (Appl Stat). 1982;31:115-124.
  63. Nachar N. The Mann-Whitney U: a test for assessing whether two independent samples come from the same distribution. TQMP. 2008;4(1):13-20. https://doi.org/10.20982/tqmp.04.1.p013
  64. Wickham H. ggplot2: elegant graphics for data analysis. Cham: Springer; 2016.
  65. Kolde R, Kolde MR. Package 'pheatmap'. R Package. 2015;1:790.
  66. Hsieh T, Ma K, Chao A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol Evol. 2016;7(12):1451-1456. https://doi.org/10.1111/2041-210X.12613
  67. Porazinska DL, Giblin-Davis RM, Faller L, et al. Evaluating high-throughput sequencing as a method for metagenomic analysis of nematode diversity . Mol Ecol Resour. 2009;9(6):1439-1450. https://doi.org/10.1111/j.1755-0998.2009.02611.x
  68. Hamad I, Ranque S, Azhar EI, et al. Culturomics and amplicon-based metagenomic approaches for the study of fungal population in human gut microbiota. Sci Rep. 2017;7(1):1-8. https://doi.org/10.1038/s41598-016-0028-x
  69. Diakite A, Dubourg G, Dione N, et al. Extensive culturomics of 8 healthy samples enhances metagenomics efficiency. PLoS One. 2019;14(10):e0223543. https://doi.org/10.1371/journal.pone.0223543
  70. Yokouchi H, Fukuoka Y, Mukoyama D, et al. Whole-metagenome amplification of a microbial community associated with scleractinian coral by multiple displacement amplification using phi29 polymerase. Environ Microbiol. 2006;8(7):1155-1163. https://doi.org/10.1111/j.1462-2920.2006.01005.x
  71. Wang XC, Liu C, Huang L, et al. ITS1: a DNA barcode better than ITS2 in eukaryotes? Mol Ecol Resour. 2015;15(3):573-586. https://doi.org/10.1111/1755-0998.12325
  72. Hoggard M, Vesty A, Wong G, et al. Characterizing the human mycobiota: a comparison of small subunit rRNA, ITS1, ITS2, and large subunit rRNA genomic targets. Front Microbiol. 2018;9:2208. https://doi.org/10.3389/fmicb.2018.02208
  73. Muggia L, Kopun T, Grube M. Effects of growth media on the diversity of culturable fungi from lichens. Molecules. 2017;22(5):824. https://doi.org/10.3390/molecules22050824
  74. Serap A, Martin-Sanchez PM, Gorbushina A. Roof-inhabiting cousins of rock-inhabiting fungi: novel melanized microcolonial fungal species from photocatalytically reactive subaerial surfaces. Life. 2018;8(3):30. https://doi.org/10.3390/life8030030
  75. Ruibal C, Gueidan C, Selbmann L, et al. Phylogeny of rock-inhabiting fungi related to dothideomycetes. Stud Mycol. 2009;64:123-133. https://doi.org/10.3114/sim.2009.64.06
  76. Halama P, Van Haluwin C. Antifungal activity of lichen extracts and lichenic acids. BioControl. 2004;49(1):95-107. https://doi.org/10.1023/b:bico.0000009378.31023.ba
  77. Chauhan R, Abraham J. In vitro antimicrobial potential of the lichen Parmotrema sp. extracts against various pathogens. Iran J Basic Med Sci. 2013;16(7):882-885.
  78. Derman E, Ergener D, Kani I. Static options replication. J Deriv. 1995;2(4):78-95 https://doi.org/10.3905/jod.1995.407927
  79. Carpenter SR. Replication and treatment strength in whole-lake experiments. Ecology. 1989;70(2):453-463. https://doi.org/10.2307/1937550
  80. Hale ME, Jr. Studies on lichen growth rate and succession. Bull Torrey Bot Club. 1959;86(2):126-129. https://doi.org/10.2307/2482993
  81. Armstrong RA. Growth curve of the lichen Rhizocarpon geographicum. New Phytol. 1983;94(4):619-622. https://doi.org/10.1111/j.1469-8137.1983.tb04870.x