DOI QR코드

DOI QR Code

Two Unrecorded Apiospora Species Isolated from Marine Substrates in Korea with Eight New Combinations (A. piptatheri and A. rasikravindrae)

  • Kwon, Sun Lul (Division of Environmental Science & Ecological Engineering, College of Life Science & Biotechnology, Korea University) ;
  • Cho, Minseo (Division of Environmental Science & Ecological Engineering, College of Life Science & Biotechnology, Korea University) ;
  • Lee, Young Min (Division of Environmental Science & Ecological Engineering, College of Life Science & Biotechnology, Korea University) ;
  • Kim, Changmu (Division of Biological & Genetic Resources Assessment, National Institute of Biological Resources) ;
  • Lee, Soo Min (Division of Wood Chemistry & Microbiology, National Institute of Forest Science) ;
  • Ahn, Byoung Jun (Division of Wood Chemistry & Microbiology, National Institute of Forest Science) ;
  • Lee, Hanbyul (Division of Polar Life Sciences, Korea Polar Research Institute) ;
  • Kim, Jae-Jin (Division of Environmental Science & Ecological Engineering, College of Life Science & Biotechnology, Korea University)
  • Received : 2021.11.17
  • Accepted : 2022.02.02
  • Published : 2022.02.28

Abstract

Although Apiospora Sacc. has previously been considered a sexual morph of Arthrinium species on the basis of phylogenetic, morphological, and ecological diagnoses, a recent study delimited these as different species. Recently, 14 species, including eight new species, of marine Arthrinium have been reported from Korea. Six known species have previously been renamed as species in the genus Apiospora (A. arundinis, A. marii, A. piptatheri, A. rasikravindrae, A. sacchari, and A. saccharicola). However, the eight new species of marine Arthrinium (Ar. agari, Ar. arctoscopi, Ar. fermenti, Ar. koreanum, Ar. marinum, Ar. pusillispermum, Ar. sargassi, and Ar. taeanense) are yet to be studied, and thus the taxonomic status of these species remains to be clarified. In this study, we conducted phylogenetic analyses using the internal transcribed spacer, 28S large subunit ribosomal RNA gene, translation elongation factor 1-alpha, and beta-tubulin regions to confirm the phylogenetic position of these eight species. Based on these analyses, we re-identified the eight Arthrinium species as new combinations in Apiospora. Additionally, among the six known Apiospora species, two (A. piptatheri and A. rasikravindrae) have not previously been recorded in Korea. On the basis of morphological and molecular analyses, we report these as new species in Korea. Herein, we present scanning electron micrographs detailing the morphologies of these species, along with phylogenetic trees and detailed descriptions.

Keywords

Acknowledgement

This work was supported by the National Institute of Biological Resources under the Ministry of Environment, Republic of Korea [NIBR202203112], and National Research Foundation of Korea (NRF) grants funded by the Korean government (MSIT) [2017R1A2B4002071 and 2021R1A2C1011894].

References

  1. Saccardo P. Conspectus generum pyrenomycetum italicorum additis speciebus fungorum Venetorum novis vel criticis, systemate carpologico dispositorum. Atti della Societa Veneziana-Trentina-Istriana di. Scienze Naturali. 1875;4:77-100.
  2. Hughes SJ. Conidiophores, conidia, and classification. Can J Bot. 1953;31(5):577-659. https://doi.org/10.1139/b53-046
  3. Minter DW. A re-appraisal of the relationships between Arthrinium and other hyphomycetes. Proc: Plant Sci. 1985;94(2-3):281. https://doi.org/10.1007/BF03053145
  4. Ellis MB. Dematiaceous hyphomycetes VI. Mycol Pap. 1965;103:1-46.
  5. Samuels G, McKenzie E, Buchanan DE. Ascomycetes of New Zealand 3. Two new species of Apiospora and their Arthrinium anamorphs on bamboo. NZ J Bot. 1981;19(2):137-149. https://doi.org/10.1080/0028825X.1981.10425113
  6. Crous PW, Groenewald JZ. A phylogenetic reevaluation of Arthrinium. IMA Fungus. 2013;4(1):133-154. https://doi.org/10.5598/imafungus.2013.04.01.13
  7. Pintos A, Alvarado P, Planas J, et al. Six new species of Arthrinium from Europe and notes about A. caricicola and other species found in Carex spp. hosts. MycoKeys. 2019;49:15-48. https://doi.org/10.3897/mycokeys.49.32115
  8. Pintos A, Alvarado P. Phylogenetic delimitation of Apiospora and Arthrinium. Fungal Syst Evol. 2021;7:197-221. https://doi.org/10.3114/fuse.2021.07.10
  9. Ellis MB. Dematiaceous hyphomycetes XI. Mycol Pap. 1972;131:1-25.
  10. Rambelli A, Venturella G, Ciccarone C. More dematiaceous hyphomycetes from Pantelleria mediterranea maquis litter. Flora Mediterranea. 2008;19:81-113.
  11. Cooke WB. The genus Arthrinium. Mycologia. 1954;46(6):815-822. https://doi.org/10.1080/00275514.1954.12024418
  12. Kwon SL, Park MS, Jang S, et al. The genus Arthrinium (Ascomycota, Sordariomycetes, Apiosporaceae) from marine habitats from Korea, with eight new species. IMA Fungus. 2021;12(1):1-26. https://doi.org/10.1186/s43008-020-00052-w
  13. Wang M, Tan X-M, Liu F, et al. Eight new Arthrinium species from China. MycoKeys. 2018;(34):1-24.
  14. Jiang N, Liang YM, Tian CM. A novel bambusicolous fungus from China, Arthrinium chinense (Xylariales). Sydowia. 2020;72:77-83.
  15. Feng Y, Liu J-KJ, Lin C-G, et al. Additions to the genus Arthrinium (Apiosporaceae) from bamboos in China. Front Microbiol. 2021;12:661281. https://doi.org/10.3389/fmicb.2021.661281
  16. Tian X, Karunarathna SC, Mapook A, et al. One new species and two new host records of Apiospora from bamboo and maize in Northern Thailand with thirteen new combinations. Life. 2021;11(10):1071. https://doi.org/10.3390/life11101071
  17. Index Fungorum 2021. Available from: http://www.indexfungorum.org/Names/Names.asp
  18. Hong J-H, Jang S, Heo YM, et al. Investigation of marine-derived fungal diversity and their exploitable biological activities. Mar Drugs. 2015;13(7):4137-4155. https://doi.org/10.3390/md13074137
  19. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870-1874. https://doi.org/10.1093/molbev/msw054
  20. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772-780. https://doi.org/10.1093/molbev/mst010
  21. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22(21):2688-2690. https://doi.org/10.1093/bioinformatics/btl446
  22. Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19(12):1572-1574. https://doi.org/10.1093/bioinformatics/btg180
  23. Darriba D, Taboada G, Doallo R, et al. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods. 2012;9(8):772. https://doi.org/10.1038/nmeth.2109
  24. O'Donnell K, Sutton DA, Rinaldi MG, et al. Novel multilocus sequence typing scheme reveals high genetic diversity of human pathogenic members of the Fusarium incarnatum-F. equiseti and F. chlamydosporum species complexes within the United States. J Clin Microbiol. 2009;47(12):3851-3861. https://doi.org/10.1128/JCM.01616-09
  25. Rehner SA, Buckley E. A Beauveria phylogeny inferred from nuclear ITS and EF1-alpha sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia. 2005;97(1):84-98. https://doi.org/10.1080/15572536.2006.11832842
  26. Miller M, Pfeiffer W, Schwartz T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE); 2010 Nov; New Orleans, LA.
  27. Rambaut A. FigTree-version 1.4. 3, a graphical viewer of phylogenetic trees. Computer program distributed by the author. Available from: http://treebioedacuk/software/figtree
  28. Munsell. Munsell soil-color charts with genuine Munsell color chips. Grand Rapids (MI): Munsell Color; 2009.
  29. Singh SM, Yadav LS, Singh PN, et al. Arthrinium rasikravindrii sp. nov. from Svalbard, Norway. Mycotaxon. 2013;122(1):449-460. https://doi.org/10.5248/122.449
  30. Yan H, Jiang N, Liang L-Y, et al. Arthrinium trachycarpum sp. nov. from Trachycarpus fortunei in China. Phytotaxa. 2019;400(3):203-210. https://doi.org/10.11646/phytotaxa.400.3.7
  31. Liu F, Bonthond G, Groenewald J, et al. Sporocadaceae, a family of coelomycetous fungi with appendage-bearing conidia. Stud Mycol. 2019;92:287-415. https://doi.org/10.1016/j.simyco.2018.11.001