DOI QR코드

DOI QR Code

Cordycepin from Medicinal Fungi Cordyceps militaris Mitigates Inflammaging-Associated Testicular Damage via Regulating NF-κB/MAPKs Signaling in Naturally Aged Rats

  • Kopalli, Spandana Rajendra (Department of Bioscience and Biotechnology, Sejong University) ;
  • Cha, Kyu-Min (D&L Biochem) ;
  • Cho, Jae Youl (Department of Integrative Biotechnology, Sungkyunkwan University) ;
  • Kim, Si-Kwan (Department of Integrated Biosciences, College of Biomedical & Health Science, Konkuk University) ;
  • Koppula, Sushruta (Department of Integrated Biosciences, College of Biomedical & Health Science, Konkuk University)
  • Received : 2021.11.16
  • Accepted : 2022.01.26
  • Published : 2022.02.28

Abstract

Inflammaging in male reproductive organs covers a wide variety of problems, including sexual dysfunction and infertility. In this study, the beneficial effects of cordycepin (COR), isolated from potential medicinal fungi Cordyceps militaris, in aging-associated testicular inflammation and serum biochemical changes in naturally aged rats were investigated. Male Sprague Dawley rats were divided into young control (YC), aged control (AC), and COR (5, 10, and 20 mg/kg) treated aged rat groups. Aging-associated serum biochemical changes and inflammatory parameters were analyzed by biochemical assay kits, Western blotting, and real-time RT-PCR. Results showed a significant (p < 0.05) alteration in the total blood cell count, lipid metabolism, and liver functional parameters in AC group when compared with YC group. However, COR-treated aged rats ameliorated the altered biochemical parameters significantly (p < 0.05 and p < 0.01 at 5, 10, and 20 mg/kg, respectively). Furthermore, the increase in the expression of inflammatory mediators (COX-2, interleukin (IL)-6, IL-1β, and tissue necrosis factor-alpha) in aged rat testis was significant (p < 0.05) when compared with YC group. Treatment with COR at 20 mg/kg to aged rats attenuated the increased expression of inflammatory mediators significantly (p < 0.05). Mechanistic studies revealed that the potential attenuating effects exhibited by COR in aged rats was mediated by regulation of NF-κB activation and MAPKs (c-Jun N-terminal kinase, extracellular signal-regulated kinase 1/2, and p38) signaling. In conclusion, COR restored the altered serum biochemical parameters in aged rats and ameliorated the aging-associated testicular inflammation proving the therapeutic benefits of COR targeting inflammaging-associated male sexual dysfunctions.

Keywords

Acknowledgement

This work was supported by Konkuk University in the year 2021.

References

  1. Frungieri MB, Calandra RS, Bartke A, et al. Ageing and inflammation in the male reproductive tract. Andrologia. 2018;50(11):e13034. https://doi.org/10.1111/and.13034
  2. Xia S, Zhang X, Zheng S, et al. An update on inflamm-aging: mechanisms, prevention, and treatment. J Immunol Res. 2016; 2016: 8426874-8426812.
  3. Corona G, Rastrelli G, Maseroli E, et al. Sexual function of the ageing male. Best Pract Res Clin Endocrinol Metab. 2013;27(4):581-601. https://doi.org/10.1016/j.beem.2013.05.007
  4. Costa C, Albersen M. Erectile dysfunction in inflammaging. In: Bagchi BR, editor. Inflammation, advancing age and nutrition. The Netherlands: Elsevier; 2014. p. 287-295.
  5. Krause W. Male accessory gland infection. Andrologia. 2008;40(2):113-116. https://doi.org/10.1111/j.1439-0272.2007.00822.x
  6. Rusz A, Pilatz A, Wagenlehner F, et al. Influence of urogenital infections and inflammation on semen quality and male fertility. World J Urol. 2012;30(1):23-30. https://doi.org/10.1007/s00345-011-0726-8
  7. Jiang H, Zhu W-J, Li J, et al. Quantitative histological analysis and ultrastructure of the aging human testis. Int Urol Nephrol. 2014;46(5):879-885. https://doi.org/10.1007/s11255-013-0610-0
  8. Sibert L, Lacarriere E, Safsaf A, et al. Aging of the human testis. Presse Med. 2014;43(2):171-177. https://doi.org/10.1016/j.lpm.2013.12.003
  9. Azenabor A, Ekun AO, Akinloye O. Impact of inflammation on male reproductive tract. J Reprod Infertil. 2015;16:123-129.
  10. Koppula S, Akther M, Haque ME, et al. Potential nutrients from natural and synthetic sources targeting inflammaging-a review of literature, clinical data and patents. Nutrients. 2021;13(11):4058. https://doi.org/10.3390/nu13114058
  11. Radhi M, Ashraf S, Lawrence S, et al. A systematic review of the biological effects of cordycepin. Molecules. 2021;26(19):5886. https://doi.org/10.3390/molecules26195886
  12. Olatunji OJ, Tang J, Tola A, et al. The genus Cordyceps: an extensive review of its traditional uses, phytochemistry and pharmacology. Fitoterapia. 2018;129:293-316. https://doi.org/10.1016/j.fitote.2018.05.010
  13. Lee C-T, Huang K-S, Shaw J-F, et al. Trends in the immunomodulatory effects of Cordyceps militaris: total extracts, polysaccharides and cordycepin. Front Pharmacol. 2020;11:575704. https://doi.org/10.3389/fphar.2020.575704
  14. Wang Z, Chen Z, Jiang Z, et al. Cordycepin prevents radiation ulcer by inhibiting cell senescence via NRF2 and AMPK in rodents. Nat Commun. 2019;10(1):2538. https://doi.org/10.1038/s41467-019-10386-8
  15. Xu J-C, Zhou X-P, Wang X-A, et al. Cordycepin induces apoptosis and G2/M phase arrest through the ERK pathways in esophageal cancer Cells. J Cancer. 2019;10(11):2415-2424. https://doi.org/10.7150/jca.32071
  16. Jin Y-T, Qi Y-Q, Jin M, et al. Synthesis, antitumor and antibacterial activities of cordycepin derivatives. J Asian Nat Prod Res. 2021;1-11.
  17. Govindula A, Pai A, Baghel S, et al. Molecular mechanisms of cordycepin emphasizing its potential against neuroinflammation: an update. Eur J Pharmacol. 2021;908:174364. https://doi.org/10.1016/j.ejphar.2021.174364
  18. Choi YH, Kim G-Y, Lee HH. Anti-inflammatory effects of cordycepin in lipopolysaccharide-stimulated RAW 264.7 macrophages through toll-like receptor 4-mediated suppression of mitogen-activated protein kinases and NF-κB signaling pathways. Drug Des Dev Ther. 2014;8:1941. https://doi.org/10.2147/DDDT.S71957
  19. Shin S, Lee S, Kwon J, et al. Cordycepin suppresses expression of diabetes regulating genes by inhibition of lipopolysaccharide-induced inflammation in macrophages. Immune Netw. 2009;9(3):98-105. https://doi.org/10.4110/in.2009.9.3.98
  20. Jo WS, Choi YJ, Kim HJ, et al. The anti-inflammatory effects of water extract from Cordyceps militaris in murine macrophage. Mycobiology. 2010;38(1):46-51. https://doi.org/10.4489/MYCO.2010.38.1.046
  21. Verma AK. Cordycepin: a bioactive metabolite of Cordyceps militaris and polyadenylation inhibitor with therapeutic potential against COVID-19. J Biomol Struct Dyn. 2020;1-8. DOI:10.1080/07391102.2020.1850352
  22. Verma AK, Aggarwal R. Repurposing potential of FDA-approved and investigational drugs for COVID-19 targeting SARS-CoV-2 spike and main protease and validation by machine learning algorithm. Chem Biol Drug Des. 2021;97(4):836-853. https://doi.org/10.1111/cbdd.13812
  23. Chen Y-C, Chen Y-H, Pan B-S, et al. Functional study of Cordyceps sinensis and cordycepin in male reproduction: a review. J Food Drug Anal. 2017;25(1):197-205. https://doi.org/10.1016/j.jfda.2016.10.020
  24. Chang Y, Jeng K-C, Huang K-F, et al. Effect of Cordyceps militaris supplementation on sperm production, sperm motility and hormones in Sprague-Dawley rats. Am J Chin Med. 2008;36(5):849-859. https://doi.org/10.1142/S0192415X08006296
  25. Ramesh T, Yoo S-K, Kim S-W, et al. Cordycepin (3'-deoxyadenosine) attenuates age-related oxidative stress and ameliorates antioxidant capacity in rats. Exp Gerontol. 2012;47(12):979-987. https://doi.org/10.1016/j.exger.2012.09.003
  26. Kopalli SR, Cha K-M, Lee S-H, et al. Cordycepin, an active constituent of nutrient powerhouse and potential medicinal mushroom Cordyceps militaris linn., ameliorates age-related testicular dysfunction in rats. Nutrients. 2019;11(4):906. https://doi.org/10.3390/nu11040906
  27. Kopalli SR, Cha K-M, Ryu J-H, et al. Korean red ginseng improves testicular ineffectiveness in aging rats by modulating spermatogenesis-related molecules. Exp Gerontol. 2017;90:26-33. https://doi.org/10.1016/j.exger.2017.01.020
  28. Won Y-J, Kim B, Shin Y-K, et al. Pectinase-treated panax ginseng extract (GINST) rescues testicular dysfunction in aged rats via redox-modulating proteins. Exp Gerontol. 2014;53:57-66. https://doi.org/10.1016/j.exger.2014.02.012
  29. Berdasco M, Esteller M. Hot topics in epigenetic mechanisms of aging: 2011. Aging Cell. 2012;11(2):181-186. https://doi.org/10.1111/j.1474-9726.2012.00806.x
  30. Baker DJ, Wijshake T, Tchkonia T, et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature. 2011;479(7372):232-236. https://doi.org/10.1038/nature10600
  31. Chung E. Sexuality in ageing male: review of pathophysiology and treatment strategies for various male sexual dysfunctions. Med Sci. 2019;7:98.
  32. Corona G, Rastrelli G, Maggi M. Diagnosis and treatment of late-onset hypogonadism: systematic review and meta-analysis of TRT outcomes. Best Pract Res Clin Endocrinol Metab. 2013;27(4):557-579. https://doi.org/10.1016/j.beem.2013.05.002
  33. Sengupta P. The laboratory rat: relating its age with humans. Int J Prev Med. 2013;4(6):624-630.
  34. Takahashi S, Tamai M, Nakajima S, et al. Blockade of adipocyte differentiation by cordycepin. Br J Pharmacol. 2012;167(3):561-575. https://doi.org/10.1111/j.1476-5381.2012.02005.x
  35. Kubota K, Shirakura T, Orui T, et al. Changes in the blood cell counts with aging. Nihon Ronen Igakkai Zasshi. 1991;28(4):509-514. https://doi.org/10.3143/geriatrics.28.509
  36. Valiathan R, Ashman M, Asthana D. Effects of ageing on the immune system: Infants to elderly. Scand J Immunol. 2016;83(4):255-266. https://doi.org/10.1111/sji.12413
  37. Kounis NG, Soufras GD, Tsigkas G, et al. White blood cell counts, leukocyte ratios, and eosinophils as inflammatory markers in patients with coronary artery disease. Clin Appl Thromb Hemost. 2015;21(2):139-143. https://doi.org/10.1177/1076029614531449
  38. Mardi D, Fwity B, Lobmann R, et al. Mean cell volume of neutrophils and monocytes compared with C-reactive protein, interleukin-6 and white blood cell count for prediction of sepsis and nonsystemic bacterial infections. Int J Lab Hematol. 2010;32:410-418. https://doi.org/10.1111/j.1751-553X.2009.01202.x
  39. Fulop T, Larbi A, Dupuis G, et al. Immunosenescence and inflamm-aging as two sides of the same coin: friends or foes? Front Immunol. 2018;8:1960. https://doi.org/10.3389/fimmu.2017.01960
  40. Mehta JL, Saldeen TG, Rand K. Interactive role of infection, inflammation and traditional risk factors in atherosclerosis and coronary artery disease. J Am Coll Cardiol. 1998;31(6):1217-1225. https://doi.org/10.1016/S0735-1097(98)00093-X
  41. Alexander RW. Inflammation and coronary artery disease. N Engl J Med. 1994;331(7):468-469. https://doi.org/10.1056/NEJM199408183310709
  42. Mahady SE, Wong G, Turner RM, et al. Elevated liver enzymes and mortality in older individuals: a prospective cohort study. J Clin Gastroenterol. 2017;51(5):439-445. https://doi.org/10.1097/MCG.0000000000000622
  43. Kim IH, Kisseleva T, Brenner DA. Aging and liver disease. Curr Opin Gastroenterol. 2015;31(3):184-191. https://doi.org/10.1097/mog.0000000000000176
  44. Franceschi C, Garagnani P, Morsiani C, et al. The continuum of aging and age-related diseases: common mechanisms but different rates. Front Med (Lausanne). 2018;5:61.
  45. Franceschi C, Garagnani P, Parini P, et al. Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nat Rev Endocrinol. 2018;14(10):576-590. https://doi.org/10.1038/s41574-018-0059-4
  46. Fulop T, Witkowski JM, Pawelec G, et al. On the immunological theory of aging. Interdiscip Top Gerontol. 2014;39:163-176. https://doi.org/10.1159/000358904
  47. Fuente M, Miquel J. An update of the oxidation-inflammation theory of aging: the involvement of the immune system in oxi-inflamm-aging. Curr Pharm Des. 2009;15(26):3003-3026. https://doi.org/10.2174/138161209789058110
  48. Matzkin ME, Mayerhofer A, Rossi SP, et al. Cyclooxygenase-2 in testes of infertile men: evidence for the induction of prostaglandin synthesis by interleukin-1β. Fertil Steril. 2010;94(5):1933-1936. https://doi.org/10.1016/j.fertnstert.2010.01.039
  49. Syntin P, Chen H, Zirkin BR, et al. Gene expression in brown Norway rat leydig cells: effects of age and of age-related germ cell loss. Endocrinology. 2001;142(12):5277-5285. https://doi.org/10.1210/en.142.12.5277
  50. Hales DB. Regulation of leydig cell function as it pertains to the inflammatory response. In Payne AH, Hardy MPH, editors. The Leydig cell in health and disease. Totowa (NJ): Humana Press; 2007. p. 117-131.
  51. Wang Y, Yang Z, Yang L, et al. Liuweidihuang pill alleviates inflammation of the testis via AMPK/SIRT1/NF-κB pathway in aging rats. Evid Based Complem Altern Med. 2020;2020:1-9.
  52. Wang Z, Chen L, Qiu Z, et al. Ginsenoside Rg1 ameliorates testicular senescence changes in D-gal-induced aging mice via anti-inflammatory and antioxidative mechanisms. Mol Med Rep. 2018;17(5):6269-6276.
  53. Agarwal A. NF-κB in male reproduction: a boon or a bane? TORSJ. 2011;3(1):85-91. https://doi.org/10.2174/1874255601103010085
  54. Zhao X, Bian Y, Sun Y, et al. Effects of moderate exercise over different phases on age-related physiological dysfunction in testes of SAMP8 mice. Exp Gerontol. 2013;48(9):869-880. https://doi.org/10.1016/j.exger.2013.05.063
  55. Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol. 2000;18:621-663. https://doi.org/10.1146/annurev.immunol.18.1.621
  56. Lu L, Wu C, Lu B, et al. BabaoDan cures hepatic encephalopathy by decreasing ammonia levels and alleviating inflammation in rats. J Ethnopharmacol. 2020;249:112301. https://doi.org/10.1016/j.jep.2019.112301
  57. Chen X, Zhang C, Wang X, et al. Juglanin inhibits IL-1β-induced inflammation in human chondrocytes. Artif Cells Nanomed Biotechnol. 2019;47(1):3614-3620. https://doi.org/10.1080/21691401.2019.1657877
  58. Wang X, Martindale JL, Liu Y, et al. The cellular response to oxidative stress: influences of mitogenactivated protein kinase signalling pathways on cell survival. Biochem J. 1998;333(2):291-300. https://doi.org/10.1042/bj3330291
  59. Xia Z, Dickens M, Raingeaud J. L, et al. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science. 1995;270(5240):1326-1331. https://doi.org/10.1126/science.270.5240.1326
  60. Li MWM, Mruk DD, Cheng CY. Mitogen-activated protein kinases in male reproductive function. Trends Mol Med. 2009;15(4):159-168. https://doi.org/10.1016/j.molmed.2009.02.002
  61. Urriola-Munoz P, Lagos-Cabre R, Moreno RD. A mechanism of male germ cell apoptosis induced by Bisphenol-A and nonylphenol involving ADAM17 and p38 MAPK activation. PLoS One. 2014;9(12):e113793. https://doi.org/10.1371/journal.pone.0113793
  62. Peretz J, Vrooman L, Ricke WA, et al. Bisphenol a and reproductive health: Update of experimental and human evidence, 2007-2013. Environ Health Perspect. 2014;122(8):775-786. https://doi.org/10.1289/ehp.1307728
  63. Lee YS, Yoon H-J, Oh J-H, et al. 1,3-Dinitrobenzene induces apoptosis in TM4 mouse sertoli cells: Involvement of the c-Jun N-terminal kinase (JNK) MAPK pathway. Toxicol Lett. 2009;189(2):145-151. https://doi.org/10.1016/j.toxlet.2009.05.014
  64. Liu X, Nie S, Chen Y, et al. Effects of 4-nonylphenol isomers on cell receptors and mitogen-activated protein kinase pathway in mouse sertoli TM4 cells. Toxicology. 2014;326:1-8. https://doi.org/10.1016/j.tox.2014.09.009
  65. Zhen X, Uryu K, Cai G, et al. Age-Associated impairment in brain MAPK signal pathways and the effect of caloric restriction in fischer 344 rats. J Gerontol Ser A: Biol Sci Med Sci. 1999;54(12):B539-B548. https://doi.org/10.1093/gerona/54.12.B539
  66. Kim M, Kim JH, Jeong GJ, et al. Particulate matter induces pro-inflammatory cytokines via phosphorylation of p38 MAPK possibly leading to dermal inflammaging. Exp Dermatol. 2019;28(7):809-815. https://doi.org/10.1111/exd.13943