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EXISTENCE OF THE CONTINUED FRACTIONS OF
√
d

AND ITS APPLICATIONS

Jun Ho Lee

Abstract. It is well known that the continued fraction expansion of√
d has the form [a0, a1, . . . , al−1, 2a0] and a1, . . . , al−1 is a palindromic

sequence of positive integers. For a given positive integer l and a palin-

dromic sequence of positive integers a1, . . . , al−1, we define the set S(l; a1,

. . . , al−1) := {d ∈ Z | d > 0,
√
d = [a0, a1, . . . , al−1, 2a0], where a0 =

b
√
dc}. In this paper, we completely determine when S(l; a1, . . . , al−1) is

not empty in the case that l is 4, 5, 6, or 7. We also give similar results

for (1 +
√
d)/2. For the case that l is 4, 5, or 6, we explicitly describe the

fundamental units of the real quadratic field Q(
√
d). Finally, we apply

our results to the Mordell conjecture for the fundamental units of Q(
√
d).

1. Introduction

For a positive square-free integer d, let td and ud be positive integers such
that

εd =
td + ud

√
d

z
> 1

is the fundamental unit of the real quadratic field Q(
√
d), where z = 2 if

d ≡ 1 (mod 4) and z = 1 otherwise. It is well known for the relation between

the continued fraction of
√
d and the fundamental unit of real quadratic field

Q(
√
d) [2,4–6,10,11,17,18]. Let d be a non-square positive integer. We denote

the continued fraction of
√
d by

√
d = [a0, a1, . . .] = [a0, a1, . . . , ald ],

where ld is the length of the period of the continued fraction expansion. Then
the period is palindromic, that is, ald−t = at for 1 ≤ t < ld and ald = 2a0. On
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the other hand, let d be a non-square positive integer congruent to 1 modulo
4. We denote the continued fraction of (1 +

√
d)/2 by

(1 +
√
d)/2 = [a′0, a

′
1, . . .] = [a′0, a

′
1, . . . , a

′
l′d

],

where l′d is the length of the period of the continued fraction expansion. Then

the continued fraction of (1 +
√
d)/2 has a similar property with the continued

fraction of
√
d. In fact, the period is also palindromic and a′l′d

= 2a′0 − 1.

In [18], for a positive square-free integer d congruent to 1 modulo 4, Tomita

determined general forms of the continued fraction of (1 +
√
d)/2 with period

4 or 5. For a positive square-free integer d congruent to 2 or 3 modulo 4,
authors [15] determined general forms of the continued fraction of

√
d with

period 4. Furthermore, for a positive square-free integer d congruent to 2 or 3
modulo 4, by determining general forms of the continued fraction of

√
d with

period 6, authors [14] considered some properties of the fundamental units of

the real quadratic field Q(
√
d). In this paper, we exactly determine when

√
d

(resp. (1 +
√
d)/2) having the forms of the continued fraction presented in

[14, 15] (resp. [18]) exists. Let m, n, and l be positive integers. We have the
following theorems.

Theorem 1.1. Let ld be 4. If both m and n are even, there exists a positive
integer a0 such that

√
d = [a0,m, n,m, 2a0]. If m is odd, there always exists

d having the form of the continued expansion
√
d = [a0,m, n,m, 2a0] for every

n. If m is even and n is odd, there does not exist d having the form of the
continued expansion

√
d = [a0,m, n,m, 2a0].

Theorem 1.2. Let ld be 5. If both m and n are odd, there exists a positive
integer a0 such that

√
d = [a0,m, n, n,m, 2a0]. If m is even, there always exists

d having the form of the continued expansion
√
d = [a0,m, n, n,m, 2a0] for

every n. If m is odd and n is even, there does not exist d having the form of
the continued expansion

√
d = [a0,m, n, n,m, 2a0].

Theorem 1.3. Let ld be 6. If mn is even or mn is odd and l is even, there
always exists a positive integer a0 such that

√
d = [a0,m, n, l, n,m, 2a0]. For

the other cases, there does not exist such d.

Theorem 1.4. Let ld be 7. Then the continued expansion
√
d has the form√

d = [a0,m, n, l, l, n,m, 2a0] and there exists a positive integer a0 such that√
d = [a0,m, n, l, l, n,m, 2a0] only for the following three cases: (i) m is even,

l is even, and n is any positive integer, (ii) m is odd, n is odd, and l is any
positive integer, (iii) m is odd, n is even, and l is odd.

2. Continued expansion of
√
d

In this section, we recall the expression of the continued fractions of
√
d

(cf. [8, 16]). Let
√
d = [a0, a1, . . .]. We define the sequences {pn}, {qn}, and
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{rn} by

(2.1)

p−1 = 1, p0 = a0, pn = anpn−1 + pn−2 (n ≥ 1),

q−1 = 0, q0 = 1, qn = anqn−1 + qn−2 (n ≥ 1),

r−1 = 1, r0 = 0, rn = anrn−1 + rn−2 (n ≥ 1).

Note that
pn
qn

= [a0, a1, . . . , an], limn→∞
pn
qn

=
√
d,

and
qn
rn

= [a1, a2, . . . , an].

It is well known for the following recurrence relations for the sequences {pn},
{qn}, and {rn}:
(2.2) qnrn−1 − rnqn−1 = (−1)n,

(2.3) qnrn−2 − rnqn−2 = (−1)n−1an,

(2.4) pn − a0qn = rn.

Now, in order to obtain the expression of
√
d in term of the sequences {pn},

{qn}, and {rn}, we consider the following equation:
√
d = [a0, a1, . . . , ald−1, [2a0, a1, . . . , ald ]](2.5)

= [a0, a1, . . . , ald−1, a0 +
√
d ]

=

[
a0,

(a+
√
d)qld−1 + qld−2

(a+
√
d)rld−1 + rld−2

]

= a0 +
(a+

√
d)rld−1 + rld−2

(a+
√
d)qld−1 + qld−2

.

That is,

(2.6) dqld−1 + qld−2
√
d = a20qld−1 + a0qld−2 + a0rld−1 + rld−1

√
d+ rld−2.

Thus

(2.7) rld−1 = qld−2.

From (2.2) and (2.7), we have

(2.8) qld−1rld−2 − q2ld−2 = (−1)ld−1.

By (2.6) and (2.7),

(2.9) d− a20 =
2a0qld−2 + rld−2

qld−1

which implies d = a20 +
2a0qld−2+rld−2

qld−1
. Here, a0 is a solution of

(2.10) 2qld−2x+ rld−2 ≡ 0 (mod qld−1).
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Moreover,

S(l; a1, . . . , al−1) = {a20 +
2a0ql−2 + rl−2

ql−1
| a0 is a solution of(2.11)

2ql−2x+ rl−2 ≡ 0 (mod ql−1), a0 ≥ 1}.

3. Proof of theorems

In this section, we investigate if there exists d having given continued fraction
expansion.

Proposition 3.1. The set

S(l; a1, . . . , al−1) :={d ∈ Z | d > 0,
√
d = [a0, a1, . . . , al−1, 2a0] where a0 =b

√
dc}

is nonempty if and only if one of the following two cases holds:

(1) ql−1 is odd;
(2) Both ql−1 and rl−2 are even, and ql−2 is odd.

Proof. By (2.11), S(l; a1, . . . , al−1) is nonempty if and only if

(3.1) 2ql−2x+ rl−2 ≡ 0 (mod ql−1)

is solvable. Since ql−2 and ql−1 are relatively prime, (3.1) is solvable if and
only if GCD(2, ql−1) divides rl−2.

If ql−1 is odd, (3.1) is always solvable. Thus S(l; a1, . . . , al−1) is nonempty.
In the case that ql−1 is even, (3.1) is solvable if and only if rl−2 is even. By (2.8),
ql−2 is odd, which implies that (3.1) is solvable. It completes the proof. �

If ld is 4, the continued fraction of
√
d has the form [a0,m, n,m, 2a0]. We

can consider the following Table 1.

Table 1.

k −1 0 1 2 3
ak a0 m n m
pk 1 a0 ma0 + 1 a0(mn+ 1) + n (a0m+ 1)(mn+ 2)− 1
qk 0 1 m mn+ 1 m(mn+ 2)
rk 1 0 1 n mn+ 1

If both m and n are odd, since q3 = m(mn+ 2) is odd, by Proposition 3.1,
S(4;m,n,m) is nonempty. If m is odd and n is even, then q3 is even. In this
case, q2 = mn + 1 is odd and r2 = n is even, which means that S(4;m,n,m)
is also nonempty. It can be similarly done in the remaining case. It completes
the proof of Theorem 1.1.

If ld is 5 (resp. 6), the continued fraction of
√
d has the form

[a0,m, n, n,m, 2a0] (resp. [a0,m, n, l, n,m, 2a0]).

We also have Table 2 for ld = 5 (we omit the table for ld = 6). It follows the
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Table 2.

k −1 0 1 2 3 4
ak a0 m n n m
qk 0 1 m mn+ 1 m(n2 + 1) + n m2(n2 + 1) + 2mn+ 1
rk 1 0 1 n n2 + 1 m(n2 + 1) + n

results of Theorems 1.2 and 1.3 through a similar computation as above.
Finally, if ld is 7, the continued fraction of

√
d has the form

[a0,m, n, l, l, n,m, 2a0].

By direct calculation, we know that

(3.2) q6 ≡ (m2n2 + 1)(l2 + 1) +m2 ≡ (mn+ 1)(l + 1) +m (mod 2),

(3.3) q5 ≡ m+n+mn2 + l+nl2 +mn2l2 ≡ n(m+ 1)(l+ 1) +m+ l (mod 2),

and

(3.4) r5 ≡ n2(l2 + 1) + 1 ≡ n(l + 1) + 1 (mod 2).

By Proposition 3.1, and (3.2), (3.3), and (3.4), we get the result of Theorem
1.4. As an example, S(4; 3, 2, 3) is nonempty by Theorem 1.1. In this case,
by Table 1, we know that q2 = 7, r2 = 2, and q3 = 24. Thus, S(4; 3, 2, 3) =
{a20 + 7a0+1

12 | 7a0 + 1 ≡ 0 (mod 12), a0 ≥ 1}. Since a0 ≡ 5 (mod 12), we have
S(4; 3, 2, 3) = {28, 299, 858, 1705, 2840, . . .}.

Now, we investigate the continued fraction of (1 +
√
d)/2. In the case that

l′d is 4 or 5, Tomita [18] determined the forms of the continued fraction of

(1 +
√
d)/2 as follows:

Theorem 3.2. Let d be a positive square-free integer congruent to 1 modulo 4
and ωd the continued fraction of (1 +

√
d)/2. Then we get

(1) If l′d is 4,

ωd =

{
[a/2, 1, l, 1, a− 1] for an odd integer l ≥ 1 if a is even,

[(a+ 1)/2, l, v, l, a] for two integers l, v ≥ 1 if a is odd,

(2) If l′d is 5,

ωd =

{
[a/2, 1, l, l, 1, a− 1] for integer l ≥ 0 if a is even,

[(a+ 1)/2, l, v, v, l, a] for two integers l ≥ 2, v ≥ 0 if a is odd.

We can ask if there always exists d having given continued fraction. Now we
restate the result of Proposition 4.1 in [9].

Proposition 3.3. Let l′ be a positive integer. We define the sequences {p′n},
{q′n}, and {r′n} which is the same with (2.1) for (1+

√
d)/2. Let p′l′d−1

/q′l′d−1
be

(l′d − 1)-th convergent of (1 +
√
d)/2. Then S′(l′; a′1, . . . , a

′
l′−1) := {d ∈ Z | d >
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0, 1+
√
d

2 = [a′0, a
′
1, . . . , a

′
l′−1, 2a

′
0 − 1] where a′0 = b 1+

√
d

2 c} is nonempty if and
only if one of the following two cases holds:

(1) q′l′−1 is odd;
(2) Both q′l′−2 and r′l′−2 are odd, and q′l′−1 is even.

Remark 3.4. In [9], Hashimoto gave the expression for S′(l′; a′1, . . . , a
′
l′−1) only

when d is a prime congruent to 1 modulo 4 and l′ is odd. Depending on the par-
ity of l′, the explicit expression for S′(l′; a′1, . . . , a

′
l′−1) is slightly different, but

Proposition 3.3 also holds even if d is a non-square positive integer congruent
to 1 modulo 4 and l′ is either odd or even. In fact,

S′(l′; a′1, . . . , a
′
l′−1) = {4[a′0(a′0 − 1) +

(2a′0 − 1)q′l′−2 + r′l′−2
q′l′−1

] + 1 |(3.5)

a0 is a solution of (2x− 1)q′l′−2 + r′l′−2 ≡ 0 (mod q′l′−1), a0 ≥ 1}.
Therefore, S′(l′; a′1, . . . , a

′
l′−1) is nonempty if and only if

(3.6) (2x− 1)q′l′−2 + r′l′−2 ≡ 0 (mod q′l′−1)

is solvable. By using (3.6) and the fact that ql′−1rl′−2 − q2l′−2 = (−1)l
′−1, we

can obtain the result of Proposition 3.3.

If l′d is 4, the continued expansion of (1 +
√
d)/2 is the form

[a′0,m, n,m, 2a
′
0 − 1].

If n is even, then q′3 is even. By Proposition 3.3 and Table 1, S′(4;m,n,m) is
empty. It means that there does not exist d having the form of the continued
expansion [a′0,m, n,m, 2a

′
0 − 1]. If n is odd and m is even, by case (2) of

Proposition 3.3, S′(4;m,n,m) is nonempty. If both m and n is odd, by case (1)
of Proposition 3.3, S′(4;m,n,m) is also nonempty. If l′d is 5, then the continued

expansion of (1 +
√
d)/2 has the form [a′0,m, n, n,m, 2a

′
0 − 1]. In this case, we

can obtain the fact that S′(5;m,n, n,m) is nonempty for all positive integers
m and n by a similar method. Therefore, we have the following results.

Theorem 3.5. Let l′d be 4. If n is odd, there always exists d having the form

of the continued expansion (1 +
√
d)/2 = [a′0,m, n,m, 2a

′
0 − 1] for every m. If

n is even, there does not exist d having the form of the continued expansion
(1 +

√
d)/2 = [a′0,m, n,m, 2a

′
0 − 1].

Theorem 3.6. Let l′d be 5. There always exists d having the form of the

continued expansion (1 +
√
d)/2 = [a′0,m, n, n,m, 2a

′
0 − 1] for all integers m

and n.

Through above procedure, we also obtain the similar results for the case
that l′d is 6 or 7. In fact, if l′d is 6, then q5 ≡ l(mn + 1) (mod 2), q4 ≡
nl(m+ 1) + 1 (mod 2), and r4 ≡ nl (mod 2). If mn is even and l is odd, then
q5 is odd. By Proposition 3.3, S′(6;m,n, l, n,m) is nonempty. On the other
hand, if mn is even and l is even, then q5 is even. In this case, one can see that
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r4 is even. By Proposition 3.3, S′(6;m,n, l, n,m) is empty. We can also check
in the case that mn is odd. If l′d is 7, one can use the congruences (3.2), (3.3),
and (3.4) to show Theorem 3.8. Therefore, we have the following theorems.

Theorem 3.7. Let l′d be 6. If mn is even and l is odd or m, n, and l are

odd, there exists d having the form of the continued expansion (1 +
√
d)/2 =

[a′0,m, n, l, n,m, 2a
′
0 − 1]. For the other cases, there does not exist such d.

Theorem 3.8. Let l′d be 7. There always exists d having the form of the

continued expansion (1 +
√
d)/2 = [a′0,m, n, l, l, n,m, 2a

′
0 − 1] for all integers

m, n, and l.

Remark 3.9. We can easily check that there always exists d having the form
of the continued expansion (1 +

√
d)/2 = [a′0,m,m, 2a

′
0 − 1] for all integers m.

For the case that l′d is 1, 3, 5, or 7, it will be meaningful to observe that there

always exists the continued expansion of
√
d with given palindromic sequence

of positive integers. Generally, what happens if l′d is odd ?

4. Relationship between fundamental unit of Q(
√
d) and continued

faction of
√
d(or (1 +

√
d)/2)

For the relation between the continued fraction of
√
d and the fundamental

unit of the real quadratic field Q(
√
d), it is well known as the following theorem

(cf. [6, 11]).

Theorem 4.1. Let d be a positive square-free integer and εd the fundamental
unit of the real quadratic field Q(

√
d). Let ld be the length of the period of the

continued fraction of
√
d and pld−1/qld−1 the (ld− 1)-th convergent of it. Then

εd = pld−1 + qld−1
√
d

or

ε3d = pld−1 + qld−1
√
d

and the latter can only occur if d ≡ 5 (mod 8).

Except for the case that d ≡ 5 (mod 8), the fundamental unit of the real

quadratic field Q(
√
d) is εd = pld−1 + qld−1

√
d. If d is a positive square-free

integer congruent to 5 modulo 8, by Theorem 4.1, then εd = pld−1 + qld−1
√
d

or ε3d = pld−1 + qld−1
√
d. Suppose d is a positive square-free integer congruent

to 2 or 3 modulo 4.
If ld = 4, the continued fraction of

√
d has the form [a0,m, n,m, 2a0], where

m is odd or both m and n are even by Theorem 1.1. In this case, for the real
quadratic field Q(

√
d), by Table 1, we get that td = p3 = (a0m+1)(mn+2)−1,

ud = q3 = m(mn+ 2).

If ld = 5, the continued fraction of
√
d has the form [a0,m, n, n,m, 2a0],

where m is even or both m and n are odd by Theorem 1.2. In this case, for
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the real quadratic field Q(
√
d), we get that td = p4 = a0(m2n2 + 2mn+m2 +

1) +mn2 +m+ n, ud = q4 = m2n2 + 2mn+m2 + 1.

If ld = 6, the continued fraction of
√
d has the form [a0,m, n, l, n,m, 2a0],

where mn is even and l is odd or mn is odd and l is even by Theorem 1.3. In
this case, for the real quadratic field Q(

√
d), we get that td = p5 = a0(m2n2l+

2m2n + 2mnl + 2m + l) + mn2 + 2mn + nl + l, ud = q5 = m2n2l + 2m2n +
2mnl + 2m+ l.

If d is a positive square-free integer congruent to 1 modulo 8, the fundamental
unit of Q(

√
d) is εd = 2td+2ud

√
d. For a positive square-free integer d congruent

to 5 modulo 8, in order to determine the fundamental unit of Q(
√
d), the

following lemma is useful (cf. [9, 16]).

Lemma 4.2. Let d be a positive square-free integer such that d ≡ 1 (mod 4).

Assume that the continued fraction expansion (1 +
√
d)/2 is as follows:

(1 +
√
d)/2 = [a′0, a

′
1, . . .] = [a′0, a

′
1, . . . , a

′
l′d

],

where l′d is the length of the period of the continued fraction expansion of (1 +√
d)/2 and p′l′d−1

/q′l′d−1
is (l′d − 1)-th convergent of it.

(1) All the positive integer solutions of x2 − xy − ((d− 1)/4)y2 = ±1 have
the form (x, y) = (p′ml′d−1

, q′ml′d−1
). Further, it holds that p′2ml′d−1

−
p′ml′d−1

q′ml′d−1
− d−1

4 q′2ml′d−1
= (−1)ml

′
d .

(2) The diophantine equation x2 − xy − ((d − 1)/4)y2 = 1 (resp. −1) is
solvable if and only if x2 − dy2 = 4 (resp. −4).

We obtain (td, ud) as the least positive integer solution of x2 − dy2 = ±4.
By Lemma 4.2, we have td = 2p′l′d−1

− q′l′d−1 and ud = q′l′d−1
. For example, let’s

consider S′(4; 3, 1, 3). By Theorem 3.5, S′(4; 3, 1, 3) is nonempty. In this case,
we know that q′2 = 4, r′2 = 1, and q′3 = 15. By (3.5),

S′(4; 3, 1, 3) = {d | 4a′0(a′0 − 1) +
4(8a′0 − 3)

15
+ 1 ∈ Z, a′0 ≥ 1}

= {133, 1725, 5117, 10309, 17301, 26093, . . .}.

We can easily check that if d ∈ S′(4; 3, 1, 3), then d ≡ 5 (mod 8). In order to

determine the fundamental unit of Q(
√

133), we consider the continued fraction

of (1+
√

133)/2. Noting that (1+
√

133)/2 = [6, 3, 1, 3, 11], we have Table 3. By
Lemma 4.2 and Table 3, we have (t133, u133) = (2p′3−q′3, q′3) = (173, 15). Thus,

the fundamental unit of Q(
√

133) is 173+15
√
133

2 . Moreover, if d ∈ S′(4; 3, 1, 3)
and d is square-free, then ud is always 15.

5. Mordell conjecture

There exist two famous conjectures related to the fundamental unit of the
real quadratic field Q(

√
p) with a prime p. One is the Ankeny-Artin-Chowla

conjecture [1], which says that for any prime p congruent to 1 modulo 4, up 6≡
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Table 3.

k −1 0 1 2 3 4
a′k 6 3 1 3 11
p′k 1 6 19 25 94
q′k 0 1 3 4 15
r′k 1 0 1 1 4

0 (mod p). The other one is the Mordell conjecture [13], which says that for
any prime p congruent to 3 modulo 4, up 6≡ 0 (mod p). The Ankeny-Artin-
Chowla conjecture was numerically verified for all primes p < 2×1011 in [19,20].
Furthermore, Mordell [12] proved the Ankeny-Artin-Chowla conjecture for any
regular prime p, i.e., when p does not divide the class number of Q(e2πi/p). On
the other hand, the Mordell conjecture has also been checked for primes not
exceeding 107 in [3]. In [7], authors provided an equivalent criterion for the
Mordell conjecture by using central term in continued fraction of

√
p. In [6]

and [9], it is proved that two conjectures hold for some families as follows:

Theorem 5.1. (1) For any odd positive integer l′ and palindromic sequence
of positive integers a′1, . . . , a

′
l′−1, it holds that up < p for all primes p ∈

S′(l′; a′1, . . . , a
′
l′−1) with one possible exception. If the minimum of S′(l′; a′1, . . .,

a′l′−1) is not prime, the Ankeny-Artin-Chowla conjecture is true for all the
primes p belonging to S′(l′; a′1, . . . , a

′
l′).

(2) For any even positive integer l and palindromic sequence of positive inte-
gers a1, . . . , al−1, it holds that up < p for all primes p ∈ S(l; a1, . . . , al−1) with
one possible exception. If the minimum of S(l; a1, . . . , al−1) is not prime, the
Mordell conjecture is true for all the primes p belonging to S(l; a1, . . . , al−1).

Let p be a prime congruent to 3 modulo 4. In order to have simpler proof
of (2) of Theorem 5.1 than [6], we give a different expression of

√
d for d := p

from being done in Section 2. Noting that lp is even, we can divide (2.9) into
the following two equations:

p− a20 = −r2lp−2 + qlp−2s,

2a0 = −qlp−2rlp−2 + qlp−1s

for some s ∈ Z. It implies that

(5.1) p =

(−qlp−2rlp−2 + qlp−1s

2

)2

+ qlp−2s− r2lp−2

for some integer s satisfying s >
qlp−2rlp−2

qlp−1
. Suppose that p ∈ S(l; a1, . . . , al−1)

and p 6= minS(l; a1, . . . , al−1). By (5.1), we have

s >
qlp−2rlp−2

qlp−1
+ 1
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and

p >
1

4
q2lp−1 + qlp−2 +

rlp−2(q2lp−2 − rlp−2qlp−1)

qlp−1

=
1

4
q2lp−1 + qlp−2 +

rlp−2

qlp−1
.

It means that p > qlp−1 for qlp−1 ≥ 4. If qlp−1 is even, we can see up = qlp−1 6≡
0 (mod p), which implies that the Mordell conjecture holds for this case. It
remains only for the case that qlp−1 is 1 or 3. For the case, we can easily check
that p > up. Therefore, in order to prove the Mordell conjecture, it is enough
to consider the case that qlp−1 is odd and the minimum of S(l; a1, . . . , al−1) is
prime.
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