
Bull. Korean Math. Soc. 59 (2022), No. 3, pp. 781–787

https://doi.org/10.4134/BKMS.b210478

pISSN: 1015-8634 / eISSN: 2234-3016
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GROUPS ALGEBRAS FROM THEIR SUBALGEBRA

Gaurav Mittal and Rajendra Kumar Sharma

Abstract. In this paper, we show that under certain conditions the

Wedderburn decomposition of a finite semisimple group algebra FqG can
be deduced from a subalgebra Fq(G/H) of factor group G/H of G, where

H is a normal subgroup of G of prime order P . Here, we assume that
q = pr for some prime p and the center of each Wedderburn component

of FqG is the coefficient field Fq .

1. Introduction and main results

Let G be a finite group, Fq be a finite field with q = pk elements for some
prime p and k > 0 and FqG denote the semisimple group algebra (cf. [6]),
where p is a prime that does not divide |G|. The determination of Wedderburn
decomposition of a finite group algebra is a well known and extensively studied
research problem (cf. [1–3,5] and the references therein). In the present paper,
we continue in this direction and show that under certain conditions, we can
directly obtain the Wedderburn decomposition of a group algebra FqG from
the subalgebra of factor group G/H of G, where H is a normal subgroup of G
having prime order P .

Main problem: Suppose that G is a finite group and H is its normal sub-
group of order P . Let G and H be such that NG = PNG/H , where NG

denotes the number of conjugacy classes of G. We want to emphasize that
there are infinitely many groups satisfying above-mentioned assumptions. For
example, (i) the general linear group of 2 × 2 matrices over the field of 4 ele-
ments denoted by GL(2, 4) (this group has a normal subgroup of order 3 with
the corresponding quotient group isomorphic to A5 with NG = 3NG/H), (ii)
groups of the form G = H1 × CP , where CP is a cyclic group of order P (this
group has a normal subgroup of order P with the corresponding quotient group
isomorphic to H1 with NG = PNG/H), (iii) A5 o C4 (this group has a normal
subgroup of order 2 with the corresponding quotient group isomorphic to S5
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with NG = 2NG/H) etc. In this paper, we consider the following problem: Sup-
pose that the Wedderburn decomposition of a subalgebra Fq(G/H) is known,
i.e., let Fq(G/H) ∼= ⊕k

r=1Mtr (Fq), and the center of each Wedderburn compo-
nent of FqG be the coefficient field Fq. Then can we compute the Wedderburn
decomposition of the group algebra FqG from that of Fq(G/H)?

Main results: For a group algebra FqG, let L1 and L2 be the lists of degrees
of Brauer characters (cf. [7]) having H in the kernel and not having H in the
kernel, respectively. The main results of the paper are as follows:

Theorem 1.1. Suppose that H := {1, h, . . . , hP−1} is a normal subgroup of
G of prime order P with NG = PNG/H . Further, let the center of each Wed-
derburn component in the Wedderburn decomposition of FqG be the coefficient
field Fq and the list L2 exactly contain every element of L1 P − 1 times with
|L2| = (P − 1)|L1|. Then hi for each 1 ≤ i ≤ P − 1 is not the commutators of
any two elements of G.

In the following theorem, we consider the stronger assumption that hi /∈ G′
for all 1 ≤ i ≤ M − 1 and show that the list L2 contains exactly P − 1
times every element of L1 with |L2| = (P − 1)|L1|. In particular, the stronger
assumption hi /∈ G′ implicitly implies that hi for each 1 ≤ i ≤ M − 1 are not
the commutator of any two elements of G.

Theorem 1.2. Suppose that H = {1, h, . . . , hP−1} is a normal subgroup of G
having prime order P satisfying NG = PNG/H and the center of each Wed-
derburn component of FqG is the coefficient field (i.e., the coefficient field is
splitting). Further, suppose that hi /∈ G′ for each 1 ≤ i ≤ P − 1. Then the list
L2 exactly contains every element of L1 P − 1 times with |L2| = (P − 1)|L1|.

We now formulate the final main result of the paper related to Wedderburn
decomposition as a corollary to Theorem 1.2.

Corollary 1.3. Suppose that the assumptions of Theorem 1.2 hold and the
Wedderburn decomposition of Fq(G/H) is known, i.e., let

Fq(G/H) ∼= ⊕k
r=1Mtr (Fq).

Then we have that FqG ∼= ⊕k
r=1Mtr (Fq)P .

Before giving the proofs of Theorems 1.1 and 1.2, we discuss the motivation
behind studying these results. By definition, a group is metabelian if its derived
(or commutator) subgroup is abelian. The unit groups of the semisimple group
algebras of metabelian groups have been well studied in the literature (cf. [1]).
However, there are many groups such as H1 ×CP , GL(2, 4), A5 oC4 etc., that
are non-metabelian (i.e., we can not deduce the Wedderburn decomposition of
the group algebras of these groups by using [1]) and satisfy the assumptions
of Theorem 1.2. Consequently, we can directly determine the Wedderburn
decomposition of these group algebras from the Wedderburn decomposition of
their subalgebras by utilizing Theorem 1.2.
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Proof of Main results: Now, we give the proofs of Theorems 1.1 and 1.2.

Proof of Theorem 1.1. Since the center of each Wedderburn component is the
coefficient field Fq, the coefficient field is a splitting field. Therefore, there is a
1-1 correspondence between the Wedderburn components and the irreducible
(Brauer) characters. Let C1, . . . , CnG

represent the conjugacy classes of G and
C′1, . . . , C′nG/H

represent that of the quotient group G/H. Let π : G → G/H

be the natural map. Then, as |H| = P , π−1(C′r) can be the union of at most
P conjugacy classes of G. The assumption NG = PNG/H leads us to conclude

that π−1(C′r) is the union of exactly P conjugacy classes of G.
Consequently, the conjugacy class Cr can be paired in P -tuples, let’s say Cr

paired with Cr+k, . . . , Cr+(P−1)k so that if the conjugacy class Cr contains gr ∈
G, then the conjugacy classes Cr+k, . . . , Cr+(P−1)k contain hgr, . . . , h

P−1gr, re-

spectively, since H = 〈h〉. This means that g, hg, . . . , hP−1g are not conjugates
for every g ∈ G (since they are in different conjugacy classes).

Let A =
(
P
2

)
. The assertion, i.e., g, hg, . . . , hP−1g are not conjugates for

every g ∈ G implicitly means that there are no g1, g2, . . . , gA ∈ G such that

g−1i (hig)gi = g for 1 ≤ i ≤ P − 1,

g−1P−1+i(h
i+1g)gP−1+i = hg for 1 ≤ i ≤ P − 2,

g−12P−3+i(h
i+2g)g2P−3+i = h2g for 1 ≤ i ≤ P − 3,

· · · · · · · · · · · ·

g−1A (hP−1g)gA = hP−2g.

From the first P−1 relations, we see that h, h2, . . . , hP−1 are not the commuta-
tors of any two elements of G. This is because g−1i (hig)gi = g for 1 ≤ i ≤ P −1

implies that hi = gigg
−1
i g−1 for 1 ≤ i ≤ P − 1 for any g1, . . . , gP−1 in G. The

second set of P − 2 relations is g−1P−1+i(h
i+1g)gP−1+i = hg. We post multiply

both sides by (hi+1g)−1 to see that

g−1P−1+i(h
i+1g)gP−1+i(h

i+1g)−1 = hg(hi+1g)−1 = hP−i for 1 ≤ i ≤ P − 2.

That is hP−i for 1 ≤ i ≤ P − 2 must not be a commutator of any two elements
of G which we already know from the first P − 1 relations. The third set of
P − 3 relations is g−12P−3+i(h

i+2g)g2P−3+i = h2g. From these relations, we see
that

g−12P−3+i(h
i+2g)g2P−3+i(h

i+2g)−1 = h2g(hi+2g)−1 = hP−i for 1 ≤ i ≤ P − 3.

That is hP−i for 1 ≤ i ≤ P − 3 must not be a commutator of any two elements
of G. On continuing similarly, we reach to the relation g−1A (hP−1g)gA = hP−2g

and deduce that g−1A (hP−1g)gA(hP−1g)−1 = hP−2g(hP−1g)−1 = hP−1, i.e.,
hP−1 must not be commutator of any two elements of G. This completes the
proof. �
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Remark 1.4. We want to emphasize that Theorem 1.1 holds for any normal
subgroup H of G of order n with NG = nNG/H . The proof for the same can
be obtained on the similar lines of proof of Theorem 1.1 by replacing P with
n.

To this end, now we discuss the proof of Theorem 1.1.

Proof of Theorem 1.2. It is given that hi /∈ G′ for each 1 ≤ i ≤ P − 1 which
means hiG′ 6= e for each 1 ≤ i ≤ P − 1. Consequently, G has a set of P − 1
linear representations ζi for 1 ≤ i ≤ P − 1 with ζi(h

i) 6= 1. This means that
ζ1(h) = α, ζ2(h2) = α, . . . , ζP−1(hP−1) = α, where α is primitive P th root
of unity. Therefore, ζ1(hg) = αζ1(g), ζ2(h2g) = αζ2(g), . . . , ζP−1(hP−1g) =
αζP−1(g) for every g ∈ G. Due to this, for the representation ζ1, we obtain
that

ζ1(h2) = αζ1(h) = α2, . . . , ζ1(hP−1) = αP−2ζ1(h) = αP−1.

Further, for the representation ζ2, we have that

ζ2(h) = ζ2(hP+1) = αζ2(hP−1) = α2ζ2(hP−3) = · · · = α
P−4+1

2 ζ2(hP−(P−4))

= α
P−2+1

2 ζ2(hP−(P−2)) = α
P−1

2 +1 = α
P+1

2 .

Similarly, we see that ζ2(h3) = αζ2(h) = α
P+3

2 , ζ2(h4) = αζ2(h2) = α2. We
continue similarly to deduce that

ζ2(hP−2) = αζ2(hP−4) = α2ζ2(hP−6) = · · · = α
(P−1)−2

2 ζ2(hP−(P−1))

= α
P−3

2 α
P+1

2 = αP−1,

and ζ2(hP−1) = α
p−1
2 . Next, we look for the values taken by the representation

ζ3 at h and hP−1. We have ζ3(h3g) = αζ3(g). If p ≡ −1 (mod 3), then one

can verify ζ3(h) = α
p+1
3 , and ζ3(hP−1) = α

2p−1
3 . And if p ≡ 1 (mod 3), then

one can verify ζ3(h) = α
2p+1

3 , and ζ3(hP−1) = α
p−1
3 . For both the cases, we

obtain that ζ3(h)ζ3(hP−1) = 1. We continue in the similar manner and obtain
the remaining values of representations ζi for 4 ≤ P − 1 at h and hP−1. In
fact, one can verify that ζi(h)ζi(h

P−1) = 1 for all 4 ≤ i ≤ P − 1.
To this end, we see that ζtΨ, for 1 ≤ t ≤ P − 1, are the representations

of G for every irreducible character Ψ of G. Next, let Ψ be a representation
of G having H in the kernel, i.e., Ψ(H) = 1. This means that Ψ(hg) = Ψ(g)
for every g ∈ G. Let the conjugacy classes of G be C1, C2, . . . , CnG

. Now, as
discussed in the proof of Theorem 1.1, we have that the conjuacy classes of
G can be paired, since h, h2, . . . , hP−1 /∈ G′. We write them as C1, . . . , CnG/H

,

hC1, . . . , hCnG/H
, . . . , hP−1C1, . . . , hP−1CnG/H

. Further, we see that

[ζ1Ψ, ζ1Ψ] =
1

|G|

nG/H∑
i=1

(
|Ci|ζ1(g)Ψ(g)ζ1(g−1)Ψ(g−1)

+ |hCi| ζ1(hg)Ψ(hg)ζ1(g−1h−1)Ψ(g−1h−1) + · · ·
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+ |hP−1Ci| ζ1(hP−1g)Ψ(hP−1g)ζ1(g−1h−(P−1))Ψ(g−1h−(P−1))
)

=
1

|G|

nG/H∑
i=1

P−1∑
j=0

(
|hjCi|ζ1(hjg)Ψ(hjg)ζ1(g−1h−j)Ψ(g−1h−j)

)
.(1.1)

Since we know that |Ci| = |hCi| = · · · = |hP−1Ci| for each i, we can write (1.1)
as

[ζ1Ψ, ζ1Ψ] =
1

|G|

nG/H∑
i=1

(
|Ci|
) P−1∑

j=0

(
ζ1(hjg)Ψ(hjg)ζ1(g−1h−j)Ψ(g−1h−j)

)
=

1

|G|

nG/H∑
i=1

(
|Ci|
) P−1∑

j=0

(
αjζ1(g)Ψ(g)ζ1(g−1hP−j)Ψ(g−1)

)
=

1

|G|

nG/H∑
i=1

(
|Ci|
) P−1∑

j=0

(
αjζ1(g)Ψ(g)αP−jζ1(g−1)Ψ(g−1)

)
=

1

|G|

nG/H∑
i=1

(
|Ci|
) P−1∑

j=0

(
ζ1(g)Ψ(g)ζ1(g−1)Ψ(g−1)

)
=

1

|G|

nG/H∑
i=1

(
|Ci|
) P−1∑

j=0

(
Ψ(g)Ψ(g−1)

)
= [Ψ,Ψ] = 1.

Now, similar to the case for [ζ1Ψ, ζ1Ψ], we see that for any 2 ≤ t ≤ P − 1, one
may obtain

[ζtΨ, ζtΨ] =
1

|G|

nG/H∑
i=1

(
|Ci|
) P−1∑

j=0

(
ζt(h

jg)Ψ(hjg)ζt(g
−1h−j)Ψ(g−1h−j)

)
=

1

|G|

nG/H∑
i=1

(
|Ci|
) P−1∑

j=0

(
αutζt(g)Ψ(g)αvtζt(g

−1)Ψ(g−1)
)
,(1.2)

where ut, vt ∈ Z+. We have already shown that for any 2 ≤ t ≤ P − 1, ut and
vt are such that αut+vt = 1. Therefore, (1.2) yields

[ζtΨ, ζtΨ] =
1

|G|

nG/H∑
i=1

(
|Ci|
) P−1∑

j=0

(
ζt(g)Ψ(g)ζt(g

−1)Ψ(g−1)
)

=
1

|G|

nG/H∑
i=1

(
|Ci|
) P−1∑

j=0

(
Ψ(g)Ψ(g−1)

)
= [Ψ,Ψ] = 1.

Thus, ζtΨ for each 1 ≤ t ≤ P−1 is an irreducible character of G, corresponding
to Ψ. Consequently, the map Ψ 7→ (ζ1Ψ, . . . , ζP−1Ψ) is a bijection, since NG =
PNG/H and 1-1 correspondence between the Wedderburn components and the
irreducible (Brauer) characters (since coefficient field is splitting). To be more
precise, corresponding to a Brauer character having H in the kernel, there
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are P − 1 Brauer characters not having H in the kernel. All in all, the list
L2 contains exactly (P − 1) times every element of L1. This completes the
proof. �

Now, we discuss the proof of Corollary 1.3

Proof of Corollary 1.3. It is given that Fq(G/H) ∼= ⊕k
r=1Mtr (Fq). From [6],

we know that if H is a normal subgroup of a group G, then FqG ∼= Fq

(
G/H

)
⊕

∆(G,H), where ∆(G,H) denotes the left ideal of FqG generated by the set
{h − 1 : h ∈ H}. Finally, we can utilize Theorem 1.2 to see that FqG ∼=
⊕k

r=1Mtr (Fq)P . �

To this end, we discuss the practicality of Theorem 1.2 by deducing the
Wedderburn decomposition of groups algebra GL(2, 4) from that of the Wed-
derburn decomposition of its subalgebras formed by one of its quotient group.
By choice of p, we know that the group algebra FqGL(2, 4) is semisimple.
We also assume that the coefficient field is a splitting field. We observe that
GL(2, 4) has a normal subgroup H of order 3 such that GL(2, 4)/H ∼= A5.
Moreover, the number of conjugacy classes of GL(2, 4) are 15 and that of
A5 are 5. In addition, one can verify that no element of H is in GL(2, 4)′.
Therefore, all the conditions of Theorem 1.2 are satisfied for P = 3. Conse-
quently, as FqA5

∼= Fq ⊕M3(Fq)2 ⊕M4(Fq) ⊕M5(Fq) (cf. [4]), we have that
FqGL(2, 4) ∼= F3

q ⊕M3(Fq)6 ⊕M4(Fq)3 ⊕M5(Fq)3. Thus, we have obtained
the Wedderburn decomposition of FqGL(2, 4). Further, one can also utilize
Theorem 1.2 for many other groups of the form H×CP , A5oC4 etc to deduce
the Wedderburn decomposition.

2. Discussion

We have shown that under certain conditions, one can obtain the Wedder-
burn decomposition of a group algebra from the subalgebra of its factor group.
We have proved Theorem 1.2 for any normal subgroup of prime order P . By
utilizing this theorem, one can obtain the Wedderburn decompositions of group
algebras of groups of arbitrary (but finite) order (provided, the assumptions of
theorem hold). Moreover, it is likely that Theorem 1.2 can be extended for nor-
mal subgroups of order n, where n is any arbitrary positive integer. Therefore,
it is an important future task.
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