DOI QR코드

DOI QR Code

유역모델을 이용한 농업용수 신속회귀수량 산정 연구

A study on estimating the quick return flow from irrigation canal of agricultural water using watershed model

  • 이지완 (건국대학교 공과대학 사회환경공학부) ;
  • 정충길 (영산강홍수통제소 예보통제과) ;
  • 김다예 (충북대학교 농업생명환경대학 지역건설공학과) ;
  • 맹승진 (충북대학교 농업생명환경대학 지역건설공학과) ;
  • 정현식 (K-water 물관리기획처) ;
  • 조영식 (K-water 인재개발원) ;
  • 김성준 (건국대학교 공과대학 사회환경공학부)
  • Lee, Jiwan (Division of Civil and Environmental Engineering, College of Engineering, Konkuk University) ;
  • Jung, Chunggil (Forcast and Control Division, Yeongsan River Flood Control Office) ;
  • Kim, Daye (Department of Agricultural & Rural Engineering, College of Agriculture and Life Sciences, Chungbuk National University) ;
  • Maeng, Seungjin (Department of Agricultural & Rural Engineering, College of Agriculture and Life Sciences, Chungbuk National University) ;
  • Jeong, Hyunsik (Water Resources Management Research & Planning Department Integrated Water Management Planning Team, K-water) ;
  • Jo, Youngsik (Human Resources Development Institute, K-water) ;
  • Kim, Seongjoon (Division of Civil and Environmental Engineering, College of Engineering, Konkuk University)
  • 투고 : 2022.02.17
  • 심사 : 2022.04.01
  • 발행 : 2022.05.31

초록

본 연구에서는 유역단위의 물수지 분석과 농업용수의 수문학적 매커니즘을 모의 할 수 있는 유역 모델링 방법을 이용하여 회귀수량 산정기법을 제시하고자 하였다. SWAT 모델을 이용하여 영산강수계 대표적인 농업지역인 만봉천 표준유역 (97.34 km2)에 대해 담수 논 모의가 고려된 유역물수지 분석을 실시하였다. 회귀수량 산정에 앞서, 나주 유량관측소의 일 유량 자료를 이용하여 SWAT을 검·보정하였다. R2, Nash-Sutcliffe Efficiency (NSE), Root-Mean-Square Error (RMSE)는 각각 0.73, 0.70, 0.64 mm/day으로 분석되었다. 3년 동안(2015~2017) 모의 결과를 토대로 관개기간(4/1~9/30)에 대한 신속 회귀수량과 공급량 대비 회귀율을 산정하였고, 평균 53.4%로 분석되었다. 본 연구에서 제시한 유역 회귀수량 모델링 기법은 향후 합리적인 유역물관리를 위한 최적 농업용수 공급방안에 대한 기초자료 구축에 활용될 수 있다.

In this study, we tried to present a method for calculating the amount of regression using a watershed modeling method that can simulate the hydrological mechanism of water balance analysis and agricultural water based on watershed unit. Using the soil water assessment tool (SWAT), a watershed water balance analysis was conducted considering the simulation of paddy fields for the Manbongcheon Standard Basin (97.34 km2), which is a representative agricultural area of the Yeongsan river basin. Before evaluating return flow, the SWAT was calibrated and validated using the daily streamflow observation data at Naju streamflow gauge station (NJ). The coefficient of determination (R2), Nash-Sutcliffe Efficiency (NSE), Root-Mean-Square Error (RMSE) of NJ were 0.73, 0.70, 0.64 mm/day. Based on the calibration results for three years (2015-2017), the quick return flow and the return rate compared to the water supply amount for the irrigation period (April 1 to September 30) were calculated, and the average return flow rate was 53.4%. The proposed method of this study may be used as foundation data to optimal agricultural water supply plan for rational watershed management.

키워드

과제정보

본 결과물은 환경부의 재원으로 한국환경산업기술원의 수생태계 건강성 확보 기술개발사업의 지원을 받아 연구되었습니다(2020003050001).

참고문헌

  1. Arnold, J.G., Williams, J.R., Srinivasan, R., and King, K.W. (1996). SWAT manual. USDA. Agricultural Research Service and Blackland Research Center, TX, U.S.
  2. Choi, J.D., and Choi, Y.H. (2002). "Return flow rate estimation of irrigation for paddy culture in Chuncheon region of the North Han river basin." KCID journal, Vol. 9, No. 2, pp. 68-77.
  3. Chung, S., and Park, K. (2004). "Irrigation return flow measurements and analysis in a small size paddy area." Journal of Korea Water Resources Association, Vol. 37, No. 7, pp. 517-526. https://doi.org/10.3741/JKWRA.2004.37.7.517
  4. Chung, S., Oh, C.J., and Nam, H.S. (1997). "A study on the return rate of agricultural water in reservoirs." Proceedings of the Korean Society of Agricultural Engineers Conference, KSAE, pp. 46-51.
  5. Dash, S.S., Sahoo, B., and Raghuwanshi, N.S. (2020). "A novel embedded pothole module for soil and water assessment tool (SWAT) improving streamflow estimation in paddy-dominated catchments." Journal of Hydrology, Vol. 588, 125103. https://doi.org/10.1016/j.jhydrol.2020.125103
  6. Gassman, P.W., Sadeghi, A.M., and Srinivasan, R. (2014). "Applications of the SWAT model special section: Overview and insights." Journal of Environmental Quality, Vol. 43, No. 1, pp. 1-8. https://doi.org/10.2134/jeq2013.11.0466
  7. Ha, R., Shin, H.J., Park, G., and Kim S.J. (2008). "Assessment of MODIS Leaf Area Index (LAI) Influence on the Penman-Monteith Evapotranspiration of SLURP Model." KSCE Journal of Civil and Environmental Engineering Research, Vol. 28, No. 5B, pp. 495-504. https://doi.org/10.12652/KSCE.2008.28.5B.495
  8. Kang, S.M. (2016). Return flow analysis in reservoir irrigation district. Ph. D. dissertation, Konkuk University, pp. 112-114.
  9. Kim, H.Y., Nam, W.H., Mun Y.S., An, H.U., Kim J.G., Shin, Y.C., Do, J.W., and Lee, K.Y. (2022). "Estimation of irrigation return flow fro paddy fields on agricultural watersheds." Journal of Korea Water Resources Association, Vol. 55, No. 1, pp. 1-10. https://doi.org/10.3741/JKWRA.2022.55.1.1
  10. Kim, H.Y., Nam, W.H., Mun, Y.S., Bang, N.K., and Kim, H.J. (2021). "Estimation of irrigation return flow on agricultural watershed in Madun reservoir." Journal of the Korean Society of Agricultural Engineers, Vol. 63, No. 2, pp. 85-96. https://doi.org/10.5389/KSAE.2021.63.2.085
  11. Kim, I.J. (2014). Design of water level monitoring network for economic water conservation from agricultural reservoir. Ph. D. dissertation, Graduate School, Konkuk University, pp. 126-128.
  12. Kim, N.W, Shin, S.C., and Won, Y.S. (2005). "Development of SWAT-AGRIMAN model." Proceedings of the Korea Water Resources Association Conference. KWRA, pp. 65-69.
  13. Kim, N.W., Kim, H,S., Chung, I.,M., Lee, J.W., and Ha, S.G. (2007). Development of analysing system for surface water hydrological components. Ministry of Science and Technology.
  14. Kim, S.M., Kim, S.J., Kim, Y.W., Park, T.Y., Kim, S.M., Park, K.W., and Jang, M.W. (2011). "Potential release of environmental flow through irrigation reservoir." Journal of the Korean society of Agricultural Engineers, Vol. 53, No. 6, pp. 101-109. https://doi.org/10.5389/KSAE.2011.53.6.101
  15. Kim, T.C., Lee, H.C., and Moon, J.P. (2010). "Estimation of return flow rate of irrgation water in Daepyeong pumping district." Journal of the Korea Society of Agricultural Enginers, Vol. 52, No. 1, pp. 41-49. https://doi.org/10.5389/KSAE.2010.52.1.041
  16. Kim, Y.W., Lee, J.W., Woo, S.Y., and Kim, S.J. (2020). " Inter-basin water transfer modeling from Seomjin river to Yeongsan river using SWAT." Journal of Korea Water Resources Association, Vol. 53, No. 1, pp. 57-70. https://doi.org/10.3741/JKWRA.2020.53.1.57
  17. Korea Rural Community Corporation (KRC) (2020). Influence of Agricultural Water Return flow in downstream of river. pp. 135-158.
  18. Korea Rural Economic Institute (KREI) (2020). Policy tasks for establishment of participatory irrigation management. pp. 3-6.
  19. K-water (2006). Watershed survey: Seomjin-Yeongsan River.
  20. Ministry Construction & Transportation (MCT) (2016). Water resource vision for long term. pp. 21
  21. Ministry of Land, Transport and Maritime Affairs (MOLTM) (2011). Water resources long-term comprehensive plan report (2011-2020).
  22. Mkhwanazi, M., Chavez, J.L., and Rambikur, E.H. (2012). "Comparison of large aperture scintillometer and satellitebased energy balance models in sensible heat flux and crop evapotranspiration determination." International Journal of Remote Sensing Applications, Vol. 12, pp. 24-30.
  23. Nash, N.E., and Sutcliffe, J.V. (1970). "River flow forecasting through conceptual models part I - A discussion of principles." Journal of Hydrology, Vol. 10, No.3, pp. 282-290. https://doi.org/10.1016/0022-1694(70)90255-6
  24. Noh, J.K., Lee, J.N., and Kim, Y.K. (2010). "Development of standardized water balance model for applying irrigation district in South Korea." Korean Journal of Agricultural Science, Vol. 37, No. 1, pp. 105-112. https://doi.org/10.7744/CNUJAS.2010.37.1.105
  25. Park, J.C., and Kim, M.K. (2016). "Development and validation of BROOK90-K for estimating irrigation return flows." Journal of the Korean Geomorphological Association, Vol. 23, No. 1, pp. 87-101. https://doi.org/10.16968/JKGA.23.1.7
  26. Park, M.J., Shin, H.J., Park, J.Y., Park, G.A., Srinivasan, R., and Kim, S.J. (2012). "Comparison of watershed streamflow using projected MIROC3. 2 HIRES GCM data and observed weather data for 2000-2009 under SWAT simulation." Transactions of the ASABE, Vol. 55, No. 3, pp. 1003-1010. https://doi.org/10.13031/2013.41513
  27. Rural Development Administration (RDA) (2018). Cultivation method by direct sowing. p. 138.
  28. Sakaguchi, A., Eguchi, S., Kato, T., Kasuya, M., Ono, K., Miyata, A., and Tase, N. (2014). "Development and evaluation of a paddy module for improving hydrological simulation in SWAT." Agricultural Water Management, Vol. 137, pp. 116-122. https://doi.org/10.1016/j.agwat.2014.01.009
  29. Song, J.H., Her, Y., Hwang, S., and Kang, M.S. (2020). "Uncertainty in irrigation return flow estimation: Comparing conceptual and physically-based parameterization approaches." Water, Vol. 12, No. 4, p. 1125. https://doi.org/10.3390/w12041125
  30. Song, J.H., Song, I.H., Kim, J.T., and Kang, M.S. (2015). "Characteristics of irrigation return flow in a reservoir irrigated district." Journal of the Korean Society of Agricultural Engineers, Vol. 57, No. 1, pp. 69-78. https://doi.org/10.5389/KSAE.2015.57.1.069
  31. Sung, M., Jeung, M., Beom, J., Park, T., Lee, J., Jung, H., Kim, Y., Yoo, S., and Yoon, K. (2021). "Simulation of water redistribution for t he resized beneficiary area of a large scale agricult ural reservoir." Journal of The Korean Society of Agricultural Engineers, Vol. 63, No. 3, pp. 1-12. https://doi.org/10.5389/KSAE.2021.63.3.001
  32. Wu, D., Cui, Y., Wang, Y., Chen, M., Luo, Y., and Zhang, L. (2019). "Reuse of return flows and its scale effect in irrigation systems based on modified SWAT model." Agricultural Water Management, Vol. 213, pp. 280-288. https://doi.org/10.1016/j.agwat.2018.10.025
  33. Yalcin, E. (2019). "Estimation of irrigation return flow on monthly time resolution using SWAT model under limited data availability." Hydrological Sciences Journal, Vol. 64, No. 13, pp. 1588-1604. https://doi.org/10.1080/02626667.2019.1662025