DOI QR코드

DOI QR Code

Research Trend in Electrocatalysts for Anion Exchange Membrane Water Electrolysis

음이온교환막 수전해 촉매기술 동향

  • Kim, Jiyoung (Department of Chemistry and Chemical Engineering, Inha University) ;
  • Lee, Kiyoung (Department of Chemistry and Chemical Engineering, Inha University)
  • 김지영 (인하대학교 화학.화학공학융합학과) ;
  • 이기영 (인하대학교 화학.화학공학융합학과)
  • Received : 2022.04.13
  • Accepted : 2022.05.02
  • Published : 2022.05.31

Abstract

The anion exchange membrane (AEM) water electrolysis for high purity hydrogen production is attracting attention as a next-generation green hydrogen production technology by using inexpensive non-noble metal-based catalysts instead of conventional precious metal catalysts used in proton exchange membrane (PEM) water electrolysis systems. However, since AEM water electrolysis technology is in the early stages of development, it is necessary to develop research on AEM, ionomers, electrode supports and catalysts, which are key elements of AEM water electrolysis. Among them, current research in the field of catalysts is being studied to apply a previously developed half-cell catalyst for alkali to the AEM system, and the applied catalyst has disadvantages of low activity and durability. Therefore, this review presented a catalyst synthesis technique that promoted oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) using a non-noble metal-based catalyst in an alkaline medium.

고순도 수소생산을 위한 음이온 교환막 수전해는 양성자 교환막 수전해 시스템에서 사용되는 기존 귀금속 촉매 대신 저렴한 비귀금속 기반 촉매를 사용하여 차세대 녹색 수소 생산 기술로 많은 관심을 받고 있다. 하지만 음이온 교환막 수전해 기술은 개발 초기 단계이기 때문에 음이온 교환막 수전해의 핵심 요소인 음이온 교환막, 이오노머, 전극지지체 및 촉매에 관한 연구 수행이 필요하다. 그 중, 현재 촉매 분야에서 진행되고 있는 연구들은 기개발된 알칼리용 반쪽전지 촉매를 음이온 교환막 시스템에 적용하는 방향의 연구가 진행되고 있으며 적용된 촉매는 낮은 활성도와 내구성의 문제점을 가진다. 이에 본 총설은 알칼리성 매질에서 비귀금속 기반 촉매를 사용하여 산소발생반응 및 수소발생반응을 촉진시킨 촉매 합성 기술을 제시하였다.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2019R1l1A3A01041454).

References

  1. M. Asif and T. Muneer, Energy supply, its demand and security issues for developed and emerging economies, Renew. Sust. Energ. Rev., 11(7), 1388-1413 (2007). https://doi.org/10.1016/j.rser.2005.12.004
  2. Z. Zakaria, Siti, K. Kamarudin, K. Anuar, A. Wahid, K. Malaysia, M. Bangi, K. Lumpur, and B.B. Bangi, Fuel cells as an advanced alternative energy source for the residential sector applications in Malaysia, Int. J. Energy Res., 45(4), 5032-5057 (2020).
  3. A. Manabe, M. Kashiwase, T. Hashimoto, T. Hayashida, A. Kato, K. Hirao, I. Shimomura, and I. Nagashima, Basic study of alkaline water electrolysis, Electrochim. Acta, 100, 249-256 (2013). https://doi.org/10.1016/j.electacta.2012.12.105
  4. S. Rau, S. Vierrath, J. Ohlmann, A. Fallisch, D. Lackner, F. Dimroth, and T. Smolinka, Highly efficient solar hydrogen generation-an integrated concept joining III-V solar cells with PEM electrolysis cells, Energy Technol., 2(1), 43-53 (2014). https://doi.org/10.1002/ente.201300116
  5. X. Shen, X. Zhang, G. Li, T. Tjing Lie, and L. Hong, Experimental study on the external electrical thermal and dynamic power characteristics of alkaline water electrolyzer, Int. J. Energy Res., 42(10), 3244-3257 (2018). https://doi.org/10.1002/er.4076
  6. D.Y.C. Leung, H. Yang, and J. Yan, Novel studies on hydrogen, fuel cell and battery energy systems, Int. J. Energy Res., 35(1), 1-1 (2011). https://doi.org/10.1002/er.1740
  7. R. Rath, P. Kumar, S. Mohanty, Sanjay, and K. Nayak, Recent advances, unsolved deficiencies, and future perspectives of hydrogen fuel cells in transportation and portable sectors, Int. J. Energy Res., 43(15), 8931-8955 (2019). https://doi.org/10.1002/er.4795
  8. J.E. Funk, Thermochemical hydrogen production: past and present, Int. J. Hydrog. Energy, 26(3), 185-190 (2001). https://doi.org/10.1016/s0360-3199(00)00062-8
  9. G.W. Crabtree and M.S. Dresselhaus, The hydrogen fuel alternative, Mrs Bull., 33(4), 421-428 (2008). https://doi.org/10.1557/mrs2008.84
  10. P.P. Edwards, V.L. Kuznetsov, W.I.F. David, and N.P. Brandon, Hydrogen and fuel cells: Towards a sustainable energy future, Energy Policy, 36(12), 4356-4362 (2008). https://doi.org/10.1016/j.enpol.2008.09.036
  11. W. Xiang and Y. Chen, Hydrogen and electricity from coal with carbon dioxide separation using chemical looping reactors, Energy Fuels, 21(4), 2272-2277 (2007). https://doi.org/10.1021/ef060517h
  12. S. K. Ryi, J. Y. Han, C. H. Kim, H. Lim, and H. Y. Jung, Technical trends of hydrogen production, Clean Technol., 23(2), 121-132 (2017). https://doi.org/10.7464/KSCT.2017.23.2.121
  13. S. Park, J. Ryu, and G. Sohn, Techno-economic analysis(TEA) on hybrid process for hydrogen production combined with biomass gasification using oxygen released from the water electrolysis based on renewable energy, J. Kor. Inst. Gas, 24(5), 65-73 (2020). https://doi.org/10.7842/KIGAS.2020.24.5.65
  14. Z. Zakaria, Z.A. Mat, S.H.A. Hassan, Y.B. Kar, and U.T. Nasional, A review of solid oxide fuel cell component fabrication methods toward lowering temperature, Int. J. Energy Res., 44(2), 594-611 (2020). https://doi.org/10.1002/er.4907
  15. I. Vincent and D. Bessarabo, Low cost hydrogen production by anion exchange membrane electrolysis: A review, Renew. Sust. Energ. Rev., 81, 169 (2018).
  16. M. K. Cho, A. Lim, S. Y. Lee, H. Kim, S. J. Yoo, Y. Sung, H. S. Park, and J. H. Jang, A review on membranes and catalysts for anion exchange membrane water electrolysis single cells, J. Electrochem. Sci. Technol., 8(3), 183-196 (2017). https://doi.org/10.5229/JECST.2017.8.3.183
  17. E. Cossar, A.O. Barnett, F. Seland, and E.A. Baranova, The performance of nickel and nickel-iron catalysts evaluated as anodes in anion exchange membrane water electrolysis, Catalysts, 9(10), 814 (2019). https://doi.org/10.3390/catal9100814
  18. S. Marini, P. Salvi, P. Nelli, R. Pesenti, M. Villa, M. Berrettoni, G. Zangari, and Y. Kiros, Advanced alkaline water electrolysis, Electrochim. Acta, 82, 384-391 (2012). https://doi.org/10.1016/j.electacta.2012.05.011
  19. W.B. Han, H.S. Cho, W.C. Cho, and C.H. Kim, Understanding the effect on hydrogen evolution reaction in alkaline medium of thickness of physical vapor deposited Al-Ni electrodes, KHNES, 28(6), 610-617 (2017).
  20. D.M.F. Santos and C.A.C. Sequeira, Hydrogen production by alkaline water electrolysis, Quim. Nova, 36(8), 1176-1193 (2013). https://doi.org/10.1590/S0100-40422013000800017
  21. F. Gutierrez-Martin, A. Ochoa-Mendoza, and L.M. Rodriguez-Anton, Pre-investigation of water electrolysis for flexible energy storage at large scales: The case of the spanish power system, Int. J. Hydrog. Energy, 40(15), 5544-5551 (2015). https://doi.org/10.1016/j.ijhydene.2015.01.184
  22. S. Oh, J. Yang, C. H. Chu, I. C. Na, and K. Park, Degradation evaluation of PEM water electrolysis by method of degradation analysis used in PEMFC, Korean Chem. Eng. Res., 59(1), 1-5 (2021).
  23. M. Langemann, D.L. Fritz, M. Muller, and D. Stolten, Validation and characterization of suitable materials for bipolar plates in PEM water electrolysis, Int. J. Hydrog. Energy, 40(35), 11385-11391 (2015). https://doi.org/10.1016/j.ijhydene.2015.04.155
  24. Q. Feng, X.Z. Yuan, G. Liu, B. Wei, Z. Zhang, H. Li, and H. Wang, A review of proton exchange membrane water electrolysis on degradation mechanisms and mitigation strategies, J. Power Sources, 366, 33-35 (2017). https://doi.org/10.1016/j.jpowsour.2017.09.006
  25. J.C. Ganley, High temperature and pressure alkaline electrolysis, Int. J. Hydrog. Energy, 34(9), 3604-3611 (2009). https://doi.org/10.1016/j.ijhydene.2009.02.083
  26. A. Ursua, L.M. Gandia, and P. Sanchis, Hydrogen production from water electrolysis: Current status and future trends, Proc. IEEE, 100(2), 410-426 (2012). https://doi.org/10.1109/JPROC.2011.2156750
  27. P. Millet, N. Mbemba, S.A. Grigoriev, V.N. Fateev, A. Aukauloo, and C. Etievant, Electrochemical performances of PEM water electrolysis cells and perspectives, Int. J. Hydrog. Energy, 36(6), 4134-4142 (2011). https://doi.org/10.1016/j.ijhydene.2010.06.105
  28. D. Strmcnik, P.P. Lopes, B. Genorio, V.R. Stamenkovic, and N.M. Markovic, Design principles for hydrogen evolution reaction catalyst materials, Nano Energy, 29, 29-36 (2016). https://doi.org/10.1016/j.nanoen.2016.04.017
  29. H.A. Miller, K. Bouzek, J. Hnat, S. Loos, C.I. Bernacker, T. Weissgarber, L. Rontzsch, and J. Meier-Haack, Green hydrogen from anion exchange membrane water electrolysis: A review of recent developments in critical materials and operating conditions, Sustain. Energy Fuels, 4(5), 2114-2133 (2020). https://doi.org/10.1039/C9SE01240K
  30. M. Gong and H. Dai, A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts, Nano Res., 8(1), 23-39 (2015). https://doi.org/10.1007/s12274-014-0591-z
  31. D. Xu, M.B. Stevens, M.R. Cosby, S.Z. Oener, A.M. Smith, L.J. Enman, K.E. Ayers, C.B. Capuano, J.N. Renner, N. Danilovic, Y. Li, H. Wang, Q. Zhang, and S.W. Boettcher, Earth-abundant oxygen electrocatalysts for alkaline anion-exchange-membrane water electrolysis: Effects of catalyst conductivity and comparison with performance in three-electrode cells, ACS Catal., 9(1), 7-15 (2019). https://doi.org/10.1021/acscatal.8b04001
  32. A. Loh, X. Li, O.O. Taiwo, F. Tariq, N.P. Brandon, P. Wang, K. Xu, and B. Wang, Development of NiFe based ternary metal hydroxides as highly efficient oxygen evolution catalysts in AEM water electrolysis for hydrogen production, Int. J. Hydrog. Energy, 45(46), 24232-24247 (2020). https://doi.org/10.1016/j.ijhydene.2020.06.253
  33. J. Lee, H. Jung, Y.S. Park, S. Woo, N. Kwon, Y. Xing, S.H. Oh, S.M. Choi, J.W. Han, and B. Lim, Corrosion-engineered bimetallic oxide electrode as anode for high-efficiency anion exchange membrane water electrolyzer, Chem. Eng. J., 420, 127670 (2021). https://doi.org/10.1016/j.cej.2020.127670
  34. A.Y. Faid, A.O. Barnett, F. Seland, and S. Sunde, NiCu mixed metal oxide catalyst for alkaline hydrogen evolution in anion exchange membrane water electrolysis, Electrochim. Acta, 371, 137837 (2021). https://doi.org/10.1016/j.electacta.2021.137837
  35. S.H. Ahn, B.S. Lee, I. Choi, S.J. Yoo, H.J. Kim, E.A. Cho, D. Henkensmeier, S.W. Nam, S.K. Kim, and J.H. Jang, Development of a membrane electrode assembly for alkaline water electrolysis by direct electrodeposition of nickel on carbon papers, Appl. Catal. B Environ., 154, 197-205 (2014).
  36. P. Chen, X. Hu, P. Chen, and X. Hu, High-efficiency anion exchange membrane water electrolysis employing non-noble metal catalysts, Adv. Energy Mater., 10(39), 2002285 (2020). https://doi.org/10.1002/aenm.202002285
  37. M. Gong, Y. Li, H. Wang, Y. Liang, J.Z. Wu, J. Zhou, J. Wang, T. Regier, F. Wei, and H. Dai, An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation, J. Am. Chem. Soc., 135(23), 8452-8455 (2013). https://doi.org/10.1021/ja4027715
  38. Z. Qiu, C.W. Tai, G.A. Niklasson, and T. Edvinsson, Direct observation of active catalyst surface phases and the effect of dynamic self-optimization in NiFe-layered double hydroxides for alkaline water splitting, Energy Environ. Sci., 12(2), 572-581 (2019). https://doi.org/10.1039/c8ee03282c
  39. H. Koshikawa, H. Murase, T. Hayashi, K. Nakajima, H. Mashiko, S. Shiraishi, and Y. Tsuji, Single nanometer-sized NiFe-layered double hydroxides as anode catalyst in anion exchange membrane water electrolysis cell with energy conversion efficiency of 74.7% at 1.0 A cm-2, ACS Catal., 10(3), 1886-1893 (2020). https://doi.org/10.1021/acscatal.9b04505
  40. E. Rasten, G. Hagen, and R. Tunold, Electrocatalysis in water electrolysis with solid polymer electrolyte, Electrochim. Acta, 48(25-26), 3945-3952 (2003). https://doi.org/10.1016/j.electacta.2003.04.001
  41. X. Wu and K. Scott, CuxCo3-xO4 (0 ≤ x < 1) nanoparticles for oxygen evolution in high performance alkaline exchange membrane water electrolysers, J. Mater. Chem., 21(33), 12344-12351 (2011). https://doi.org/10.1039/c1jm11312g
  42. C.C. Pavel, F. Cecconi, C. Emiliani, S. Santiccioli, A. Scaffidi, S. Catanorchi, and M. Comotti, Hydrogen production highly efficient platinum group metal free based membrane-electrode assembly for anion exchange membrane water electrolysis, Angew. Chem. Int. Ed., 53(5), 1378-1381 (2014). https://doi.org/10.1002/anie.201308099
  43. S. Wang, L. Zhang, Z. Xia, A. Roy, D.W. Chang, J.-B. Baek, and L. Dai, BCN graphene as efficient metal-free electrocatalyst for the oxygen reduction reaction, Angew. Chem. Int. Ed., 51(17), 4209-4212 (2012). https://doi.org/10.1002/anie.201109257
  44. Y. Jiao, Y. Zheng, M. Jaroniec, and S. Z. Qiao, Origin of the electrocatalytic oxygen reduction activity of graphene-based catalysts: A roadmap to achieve the best performance, J. Am. Chem. Soc., 136(11), 4394-4403 (2014). https://doi.org/10.1021/ja500432h
  45. L. Yang, S. Jiang, Y. Zhao, L. Zhu, S. Chen, X. Wang, Q. Wu, J. Ma, Y. Ma, and Z. Hu, Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction, Angew. Chem. Int. Ed., 50(31), 7132-7135 (2011). https://doi.org/10.1002/anie.201101287
  46. Z.-W. Liu, F. Peng, H.-J. Wang, H. Yu, W.-X. Zheng, and J. Yang, Phosphorus-doped graphite layers with high electrocatalytic activity for the O2 reduction in an alkaline medium, Angew. Chem. Int. Ed., 50(14), 3257-3261 (2011). https://doi.org/10.1002/anie.201006768
  47. R. Li, Z. Wei, and X. Gou, Nitrogen and phosphorus dual-doped graphene/carbon nanosheets as bifunctional electrocatalysts for oxygen reduction and evolution, ACS Catal., 5(7), 4133-4142, (2015). https://doi.org/10.1021/acscatal.5b00601
  48. S. Seetharaman, R. Balaji, K. Ramya, K.S. Dhathathreyan, and M. Velan, Graphene oxide modified non-noble metal electrode for alkaline anion exchange membrane water electrolyzers, Int. J. Hydrog. Energy, 38(35), 14934-14942 (2013). https://doi.org/10.1016/j.ijhydene.2013.09.033