DOI QR코드

DOI QR Code

Electrochemical Method for Measurement of Hydroxide Ion Conductivity and CO2 Poisoning Behavior of Anion Exchange Membrane

음이온 교환막의 정확한 OH-전도도 및 CO2 피독 효과 분석을 위한 전기화학적 측정법

  • Kim, Suyeon (Fuel Cell Laboratory, Korea Institute of Energy Research (KIER)) ;
  • Kwon, Hugeun (Fuel Cell Laboratory, Korea Institute of Energy Research (KIER)) ;
  • Lee, Hyejin (Fuel Cell Laboratory, Korea Institute of Energy Research (KIER)) ;
  • Jung, Namgee (Graduate School of Energy Science and Technology (GEST), Chungnam National University) ;
  • Bae, Byungchan (Fuel Cell Laboratory, Korea Institute of Energy Research (KIER)) ;
  • Shin, Dongwon (Fuel Cell Laboratory, Korea Institute of Energy Research (KIER))
  • 김수연 (한국에너지기술연구원 연료전지연구실) ;
  • 권후근 (한국에너지기술연구원 연료전지연구실) ;
  • 이혜진 (한국에너지기술연구원 연료전지연구실) ;
  • 정남기 (충남대학교 에너지과학기술대학원) ;
  • 배병찬 (한국에너지기술연구원 연료전지연구실) ;
  • 신동원 (한국에너지기술연구원 연료전지연구실)
  • Received : 2022.04.07
  • Accepted : 2022.04.21
  • Published : 2022.05.31

Abstract

The anion exchange membrane used in alkaline membrane fuel cells transports hydroxide ions, and ion conductivity affects fuel cell performance. Thus, the measurement of absolute hydroxide ion conductivity is essential. However, it is challenging to accurately measure hydroxide ion conductivity since hydroxide ions are easily poisoned in the form of bicarbonate by carbon dioxide in the atmosphere. In this study, we applied electrochemical ion exchange treatment to measure the absolute hydroxide ion conductivity of the anion exchange membrane. In addition, we investigated the effect of carbon dioxide poisoning of hydroxide ions on electrochemical performance by measuring bicarbonate conductivity. Commercial anion exchange membranes (FAA-3-50 and Orion TM1) and polyphenylene-based block copolymer (QPP-6F) were used.

알칼리막 연료전지에 사용되는 음이온 교환막은 OH-을 전달하는 역할을 하며 연료전지의 성능에 많은 영향을 미친다. 따라서 음이온 교환막의 정확한 OH- 전도도를 측정하는 것은 매우 중요하다. 그러나 OH-은 대기 중의 CO2에 의해 중탄산염 형태로 쉽게 피독되어 전해질막의 정확한 OH- 전도도를 측정하는 것은 매우 어렵다. 본 연구에서는 음이온 교환막의 정확한 OH- 전도도를 측정하기 위하여 전기화학적 이온교환 처리법을 검증하였다. 또한 CO2에 노출된 전해질막의 거동을 OH- 전도도 변화를 통하여 확인하였다. 상용 음이온 교환 막인 Fumatech사의 FAA-3-50과 Orion Polymer사의 Orion TM1와 함께 본 연구 그룹에서 개발한 QPP-6F를 사용하여 정확한 OH- 전도도 측정 및 CO2 피독 효과에 대해서 분석하였다.

Keywords

References

  1. S. Gottesfeld, D. R. Dekel, M. Page, C. Bae, Y. Yan, P. Zelenay, and Y. S. Kim, Anion exchange membrane fuel cells: Current status and remaining challenges, J. Power Sources, 375, 170-184 (2018). https://doi.org/10.1016/j.jpowsour.2017.08.010
  2. H. S. Yoon, W. S. Jung, and M. H. Choe, Recent advances in studies of the activity of non-precious metal catalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells, J. Korean Electrochem. Soc., 23(4), 90-96 (2020). https://doi.org/10.5229/JKES.2020.23.4.90
  3. P. Atkins and J. d. Paula, Physical Chemistry, 8th ed., pp. 765, Oxford University Press, UK (2006).
  4. M. R. Hibbs, M. A. Hickner, T. M. Alam, S. K. McIntyre, C. H. Fujimoto, and C. J. Cornelius, Transport properties of hydroxide and proton conducting membranes, Chem. Mater., 20(7), 2566-2573 (2008). https://doi.org/10.1021/cm703263n
  5. H. Kim, B. Koo, and H. Lee, Comparison of arrhenius and VTF description of ion transport mechanism in the electrolytes, J. Korean Electrochem. Soc., 23(4), 81-89 (2020). https://doi.org/10.5229/JKES.2020.23.4.81
  6. C. G. Arges, V. K. Ramani, and P. N. Pintauro, The chalkboard: Anion exchange membrane fuel cells, Electrochem. Soc. Interface, 19(2), 31-35 (2010). https://doi.org/10.1149/2.f03102if
  7. M. G. Marino, and K. D. Kreuer, Alkaline stability of quaternary ammonium cations for alkaline fuel cell membranes and ionic liquids, ChemSusChem, 8(3), 513-523 (2015). https://doi.org/10.1002/cssc.201403022
  8. Y. K. Choe, C. Fujimoto, K. S. Lee, L. T. Dalton, K. Ayers, N. J. Henson, and Y. S. Kim, Alkaline stability of benzyl trimethyl ammonium functionalized polyaromatics: a computational and experimental study, Chem. Mater., 26(19), 5675-5682 (2014). https://doi.org/10.1021/cm502422h
  9. Z. Siroma, S. Watanabe, K. Yasuda, K. Fukuta, and H. Yanagi, Mathematical modeling of the concentration profile of carbonate ions in an anion exchange membrane fuel cell, J. Electrochem. Soc., 158(6), B682-B689 (2011).
  10. E. Yuk, H. Lee, N. Jung, D. Shin, and B. Bae, Electrochemical characteristics of electrode by various preparation methods for alkaline membrane fuel cell, J. Korean Electrochem. Soc., 24(4), 106-112 (2021). https://doi.org/10.5229/JKES.2021.24.4.106
  11. W. H. Lee, E. J. Park, J. Han, D. W. Shin, Y. S. Kim, and C. Bae, Poly (terphenylene) anion exchange membranes: the effect of backbone structure on morphology and membrane property, ACS Macro Lett., 6(5), 566-570 (2017). https://doi.org/10.1021/acsmacrolett.7b00148
  12. H. Yanagi, and K. Fukuta, Anion exchange membrane and ionomer for alkaline membrane fuel cells (AMFCs), ECS trans., 16(2), 257-262 (2008). https://doi.org/10.1149/1.2981860
  13. K. H. Lee, D. H. Cho, Y. M. Kim, S. J. Moon, J. G. Seong, D. W. Shin, J.-Y. Sohn, J. F. Kim, and Y. M. Lee, Highly conductive and durable poly (arylene ether sulfone) anion exchange membrane with end-group cross-linking, Energy Environ. Sci., 10(1), 275-285 (2017). https://doi.org/10.1039/c6ee03079c
  14. Li, N., Wang, L., and Hickner, M., Cross-linked comb-shaped anion exchange membranes with high base stability, Chem. Commun., 50(31), 4092-4095 (2014). https://doi.org/10.1039/c3cc49027k
  15. N. Yokota, M. Shimada, H. Ono, R. Akiyama, E. Nishino, K. Asazawa, J. Miyake, M. Watanabe, and K. Miyatake, Aromatic copolymers containing ammonium-functionalized oligophenylene moieties as highly anion conductive membranes, Macromolecules, 47(23), 8238-8246 (2014). https://doi.org/10.1021/ma5019878
  16. A. G. Wright, J. Fan, B. Britton, T. Weissbach, H.-F. Lee, E. A. Kitching, T. J. Peckhama, and S. Holdcroft, Hexamethyl-p-terphenyl poly (benzimidazolium): a universal hydroxide-conducting polymer for energy conversion devices, Energy Environ. Sci., 9(6), 2130-2142 (2016). https://doi.org/10.1039/c6ee00656f
  17. N. Ziv, and D. R. Dekel, A practical method for measuring the true hydroxide conductivity of anion exchange membranes, Electrochem. Commun., 88, 109-113 (2018). https://doi.org/10.1016/j.elecom.2018.01.021
  18. N. Ziv, A. N. Mondal, T. Weissbach, S. Holdcroft, and D. R. Dekel, Effect of CO2 on the properties of anion exchange membranes for fuel cell applications, J. Membr. Sci., 586, 140-150 (2019). https://doi.org/10.1016/j.memsci.2019.05.053
  19. J. Muller, A. Zhegur, U. Krewer, J. R. Varcoe, and D. R. Dekel, Practical ex-situ technique to measure the chemical stability of anion-exchange membranes under conditions simulating the fuel cell environment, ACS Mater. Lett., 2(2), 168-173 (2020). https://doi.org/10.1021/acsmaterialslett.9b00418
  20. Y. Zheng, T. J. Omasta, X. Peng, L. Wang, J. R. Varcoe, B. S. Pivovar, and W. E. Mustain, Quantifying and elucidating the effect of CO2 on the thermodynamics, kinetics and charge transport of AEMFCs, Energy Environ. Sci., 12(9), 2806-2819 (2019). https://doi.org/10.1039/C9EE01334B
  21. A. F. Nugraha, S. Kim, S. H. Shin, H. Lee, D. Shin, and B. Bae, Chemically durable poly (phenylene-co-arylene ether) multiblock copolymer-based anion exchange membranes with different hydrophobic moieties for application in fuel cell, Macromolecules, 53(23), 10538-10547 (2020). https://doi.org/10.1021/acs.macromol.0c01976
  22. A. M. Barnes, B. Liu, and S. K. Buratto, Humidity-dependent surface structure and hydroxide conductance of a model quaternary ammonium anion exchange membrane, Langmuir, 35(44), 14188-14193 (2019). https://doi.org/10.1021/acs.langmuir.9b02160