DOI QR코드

DOI QR Code

Analysis of domestic and foreign future automobile research trends based on topic modeling

토픽모델링 기반의 국내외 미래 자동차 연구동향 비교 분석: CASE 키워드 중심으로

  • 정호정 (대구디지털산업진흥원 빅데이터활용센터) ;
  • 김건욱 (대구디지털산업진흥원 빅데이터활용센터) ;
  • 김나경 (대구디지털산업진흥원 빅데이터활용센터) ;
  • 장원준 (대구디지털산업진흥원 빅데이터활용센터) ;
  • 정원웅 (대구디지털산업진흥원 빅데이터활용센터) ;
  • 박대영 (카이스트대학교 경영공학)
  • Received : 2022.03.11
  • Accepted : 2022.05.20
  • Published : 2022.05.28

Abstract

After industrialization in the past, the automobile industry has continued to grow centered on internal combustion engines, but is facing a major change with the recent 4th industrial revolution. Most companies are preparing for the transition to electric vehicles and autonomous driving. Therefore, in this study, topic modeling was performed based on LDA algorithm by collecting 4,002 domestic papers and 68,372 overseas papers that contain keywords related to CASE (Connectivity, Autonomous, Sharing, Electrification), which represent future automobile trends. As a result of the analysis, it was found that domestic research mainly focuses on macroscopic aspects such as traffic infrastructure, urban traffic efficiency, and traffic policy. Through this, the government's technical support for MaaS (Mobility-as-a-Service) is required in the domestic shared car sector, and the need for data opening by means of transportation was presented. It is judged that these analysis results can be used as basic data for the future automobile industry.

과거 산업화 이후 자동차 산업은 내연기관 중심의 지속적인 성장을 하였으나, 최근 4차 산업혁명으로 큰 변화를 맞이하고 있다. 대다수의 기업들이 전기 자동차, 자율주행으로의 전환을 준비하고 있으며, 현시점에서 국내와 국외의 미래 자동차 연구동향을 비교 분석할 필요가 있다. 이에 본 연구에서는 미래 자동차 트렌드를 대표하는 CASE(Connectivity, Autonomous, Sharing, Electrification)와 관련된 키워드가 포함된 국내 4,002건, 국외 68,372건 논문을 수집하여 LDA 알고리즘 기반의 토픽모델링을 수행하였으며, 국내외 미래 자동차 연구동향을 비교 분석하여 정책적 시사점을 제시하였다. 분석 결과 국내의 경우 교통 인프라, 도시 내 교통효율, 교통정책 등과 같은 거시적인 측면에서의 연구가 주를 이루는 것으로 나타났으며, 국외는 객체인식, 사물인터넷, 전기자동차 소음 등의 차량기술과 관련된 연구가 활성화되고 있음을 확인할 수 있었다. 이를 통해 국내 공유자동차 부문에 있어 MaaS(Mobility-as-a-Service)와 관련한 정부의 기술지원이 필요하고 교통수단별 데이터 개방 필요성 등에 대하여 제시하였고, 이러한 분석결과는 미래 자동차 산업을 위한 기초자료로 활용될 수 있을 것으로 판단된다.

Keywords

Acknowledgement

This paper was supported by the Korea Institute for Advancement of Technology funded by the Ministry of Trade, Industry and Energy(grant number:P0018434)

References

  1. G.L.Kim (2021). A Study on the Analysis of R&D Trends and the Development of Logic Models for Autonomous Vehicles. Journal of Digital Convergence, 19(5), 31-39, DOI :10.14400/JDC.2021.19.5.031
  2. J.S.Roe (2017). A study on exploring the future mobility service focused on car-sharing system. The Korean Society of Science & Art, 29, 75-87. DOI : 10.17548/ksaf.2017.06.29.75
  3. J.W.Gu, & J.H.Lee, & M.S.Chung, & J.Y.Lee. (2017). Electric Vehicle Technology Trends Forecast Research Using the Paper and Patent Data. Journal of digital convergence 15(2), 165 - 172 DOI : 10.14400/JDC.2017.15.2.165
  4. D.K.Nam, & G.H.Choi (2018). Technology Trend Analysis in the Automotive Semiconductor Industry using Topic Model and Patent Analysis. Journal of Korea technology innovation society, 21(3), 1155-1178
  5. J.H.Jeong, & T.H.Jung. (2019). A Study on the Different Characteristics of Autonomous Vehicle Technology Between Automobile and Non-Automobile Industry. The Journal of Intellectual Property 14(1), 231-270 DOI : 10.34122/jip.2019.03.14.1.231
  6. S.B.Cho, & S.H.Ha. (2020). Analysis of Open Government Data Demand Using Structural Topic Modeling. Journal of Information Technology and Architecturte 17(2), 103-118. DOI : 10.22865/jita.2020.17.2.103
  7. D.M.Blei. (2012) Probabilistic Topic Models. Communications of the acm 55(4) DOI : 10.1145/2133806.2133826
  8. H.R.Lee. (2021). Topics and trends in early childhood education research in Korea: 2005-2019. Korean Journal of Early Childhood Education 41(5), 259-278. DOI : 10.18023/kjece.2021.41.5.011
  9. H.I.Jo, & J.W.Kim, & B.G.Lee. (2019). A Study on Research Trends of Blockchain Using LDA Topic Modeling : Focusing on United States, China, and South Korea. Journal of Digital Contents Society 20(7), 1453-1460 DOI : 10.9728/dcs.2019.20.7.1453
  10. W.S.Lee & S.Y.Sohn. (2015). Topic Model Analysis of Research Trend on Spatial Big Data . Journal of the Korean Institute Of Industrial Engineers, 41(1), 64-73. DOI : 10.7232/JKIIE.2015.41.1.064
  11. K.C.Park & C. H. Lee.(2019). A Study on the Research Trends for Smart City using Topic Modeling. Journal of Internet Computing and Services, 20(3), 119-128. DOI : 10.7472/JKSII.2019.20.3.119
  12. Y.J.Jung, & H.J.Kim (2020). A Study on the School Library Research Trends Using Topic Modeling. Journal of Korean Library and Information Science Society, 51(3), 103-121 DOI : 10.16981/kliss.51.3.202009.103
  13. J.H.Park & H.J.Oh. (2017). Comparison of Topic Modeling Methods for Analyzing Research Trends of Archives Management in Korea : focused on LDA and HDP. Journal of Korean Library and Information Science Society, 48(4), 235-258. DOI : 10.16981/kliss.48.4.201712.235
  14. S.K.Kim, & S. Y. Jang. (2016). Analysis of Research Trends in Domestic Industrial Engineering Using Topic Modeling. Korean Institute Of Industrial Engineers Journal of the Spring Joint Academic Conference, 3996-4018.
  15. J.S.Park & N.R.Kim & E.J.Han. (2018). Analysis of Trends in Science and Technology using Keyword Network Analysis. Journal of the Korea Industrial Information Systems Research, 23(2), 66-73. DOI : 10.9723/jksiis.2018.23.2.063
  16. C.S.Kim & S.J.Choi & K.Y.Kwahk. (2017). Investigation of Research Trends in Information Systems Domaing Using Topic Modeling and Time Series Regression Analysis. Journal of Digital Contents Society, 18(6), 1143-1150. DOI : 10.9728/dcs.2017.18.6.1143
  17. H. H. Choi & D. Y Shim. (2020). Analysis of Kore ICT Convergence Trend using Text Mining Methodology. Innovation Studies, 15(3), 257-281. DOI : 10.46251/INNOS.2020.08.15.3.257
  18. S.B.Cho & S.A.Shin & D.S.Kang. (2018). A Study on the Research Trends on Open Innovation using Topic Modeling. Informatization policy, 25(3), 52-74. DOI : 10.22693/NIAIP.2018.25.3.052
  19. D.K.Nam & G.H.Choi. (2018). Technology Trend Analysis in the Automotive Semiconductor Industry using Topic Model and Patent Analysis. Journal of Korea technology innovation society, 21(3), 1155-1178.