참고문헌
- ITF Author. (2020). Road Safety Annual Report. International Transport Forum. ISSN: 23124571 (online) DOI : 10.1787/23124571
- KoROAD. (2020). Comparison of traffic accidents in OECD member countries in 2018. Traffic Accidents Statistical Report. http://taas.koroad.or.kr
- B. G. Lee. (2020). Characteristics of Pedestrian Traffic Accidents and Reduction Plans. Daejeon Sejong Institute Basic Research Report. https://www.dsi.re.kr
- H. J. Jeon. (2020). Half of the fatalities in road accidents. Daejeon City invested KRW 100 billion. http://www..kmib.co.kr
- P. NILSSON & S. NILSSON. (2015). Application of Poisson Regression on Traffic Safety. KTH Royal Institute of Technology. www.kth.se/sci
- J. B. Lim, Y. H. Won, S. B. Lee & S. W. Kim. (2012). Bayesian analysis for the bivariate Poisson regression model: Applications to road safety countermeasures. Journal of the Korean Data & Information Science Society, 23(4), 851-858. DOI:10.7465/jkdi.2012.23.4.851
- J. P. Jeong & J. H. Choi. (2014). Poisson Regression and Negative Binomial Regression Model Fit for Traffic Accidents. Journal of the Korean Data Analysis Society, 16(1), 165-172
- Y. D. Kim & K. H. Cho. (2013). Big data and statistics. Journal of the Korean Data And Imformation Science Society, 24(5), 959-974 https://doi.org/10.7465/jkdi.2013.24.5.959
- S. E. Lee & H. J. Kim. (2020). A New Ensemble Machine Learning Technique with Multiple Stacking. The Journal of Society for e-Business Studies, 25(3), 1-13. DOI : 10.7838/Jsebs.2020.25.3.001
- S. H. Kim, Y. B. Lym & K. J. Kim.. (2021). Classifying Severity of Senior Driver Accidents In Capital Regions Based on Machine Learning Algorithms. Journal of Digital Convergence, 19(4), 25-31. DOI: 10.14400/JDC.2021.19.4.025
- Hints & Kinks. (2012). Classification and regression trees. International Journal of Public Health, 57, 243-246. https://doi.org/10.1007/s00038-011-0315-z
- L. Breiman, J. H. Friedman, R. A. Olshen, C.J. stone. (2017). Classification And Regression Trees. DOI:10.1201/9781315139470. Subjects Mathematics & Statistics. Pub. Location New York
- Z. Liu, H. Bensmail & M.Tan. (2012). Efficient Feature Selection and Multiclass Classification with Integrated Instance and Model Based Learning. Evol Bioinform Online. 8, 97-205. DOI:10.4137/EBO.S9407
- M. Biehl1, B. Hammer & T. Villmann.(2013). Distance measures for prototype based classification. International Workshop on Brain-Inspired Computing. 100-116. DOI:10.1007/978-3-319-12084-3_9
- C. W. Ko, H.M. Kim, Y.S. Jeong & J.H. Kim. (2020). A Study on Injury Severity Prediction for Car-to-Car Traffic Accidents. J. Korea Inst. Intell. Transp. Syst. Vol.19 No.4 pp.13~29. DOI : 10.12815/kits.
- M. Kuhn & K. Johnson. (2013). Applied predictive Modeling. Springer New York Heidelberg Dordrecht London. DOI: 10.1007/978-1-4614-6849-3
- S. R. Gunn.(1998). Support Vector Machines for Classification and Regression. Technical Report. UNIVERSITY OF SOUTHAMPTON
- X. Gu, T. Li, Y. Wang, Y., Zhang, L., Wang, Y., & Yao, J. (2018). Traffic fatalities prediction using support vector machine with hybrid particle swarm optimization. Journal of Algorithms and Computational Technology, 12(1), 20-29. DOI : 10.1177/1748301817729953
- N. Cristianini & J. Shawe-Taylor. (2000). An introduction to support vector machines and other kernel-based learning methods. Cambridge: Cambridge University Press. DOI: 10.1017/CBO9780511801389
- G. Brown. (2010). Ensemble Learning. Encyclopedia of Machine Learning, 312, 15-19.
- Z. H. Zhou. (2012).Ensemble methods: Foundations and algorithms. Chapman and Hall/CRC, ISBN 978-1-439-830031
- Y. J. Kim. Y. L. Choi, S. L. Kim, K. Y. Park & J. H. Park. (2016). A study on method for user gender prediction using multi-modal smart device log data. The Journal of Society for e-Business Studies, 21(1), 147-163, DOI: 10.7838/ jsebs.2016.21.1.147
- L. Breiman. (1996). Bagging predictors. Machine Learning, 24(2), 123-140. https://doi.org/10.1007/BF00058655
- I. Syarif, E. Zaluska, A. Prugel-Bennett and G. Wills. (2012). Application of bagging, boosting and stacking to intrusion detection. International Workshop on Machine Learning and Data Mining in Pattern Recognition, 7376(8), 593-602, DOI: 10.1007/9783642315374
- P. BartlettR, Y. Freund, W. S. Lee, R. Schapire. (1998). Boosting the margin: A new explanation for the effectiveness of voting methods. The annals of statistics, 26(5), 1651-1686, DOI: 10.1214/aos/1024691352
- C. W. Kwon & H. H. Chang. (2021). Comparative Analysis of Traffic Accident Severity of Two-Wheeled Vehicles Using XGBoost, J. Korea Inst. Intell Transp Syst, 20(4), 1-12. DOI:10.12815/kits.2021.20.4.1
- J. Tang, J. Liang, C. Han, Z. Li, H. Huang. (2019). Crash injury severity analysis using a two-layer Stacking framework. Accident Analysis & Prevention, 122, 226-238. DOI: 10.1016/j.aap.2018.10.016
- X. Wen, Y. Xie, L. Jiang, Z. Pu &T. Ge. (2021). Applications of machine learning methods in traffic crash severity modelling: current status and future directions. Transport Reviews. 41(6), 855-879. DOI : 10.1080/01441647.2021.1954108
- D. Altman, J. Bland. (1994). Diagnostic Tests 3: Receiver Operating Characteristic Plots. British Medical Journal, 309(6948), 188. DOI: 10.1136/bmj.309.6948.188
- C. D. Brown & H. T. Davis. (2006). Receiver Operating Characteristics Curves and Related Decision Measures: A Tutorial. Chemometrics and Intelligent Laboratory Systems, 80(1), 24-38. DOI: 10.1016/j.chemolab.2005.05.004
- T. Fawcett. (2006). An Introduction to ROC Analysis. Pattern Recognition Letters, 27(8), 861-874. DOI: 10.1016/j.patrec.2005.10.010