DOI QR코드

DOI QR Code

E3 ligase BRUTUS Is a Negative Regulator for the Cellular Energy Level and the Expression of Energy Metabolism-Related Genes Encoded by Two Organellar Genomes in Leaf Tissues

  • Choi, Bongsoo (Department of Life Science, Pohang University of Science and Technology) ;
  • Hyeon, Do Young (School of Biological Sciences, Seoul National University) ;
  • Lee, Juhun (Department of Life Science, Pohang University of Science and Technology) ;
  • Long, Terri A. (Department of Plant and Microbial Biology, North Carolina State University) ;
  • Hwang, Daehee (School of Biological Sciences, Seoul National University) ;
  • Hwang, Inhwan (Department of Life Science, Pohang University of Science and Technology)
  • Received : 2021.11.21
  • Accepted : 2021.12.26
  • Published : 2022.05.31

Abstract

E3 ligase BRUTUS (BTS), a putative iron sensor, is expressed in both root and shoot tissues in seedlings of Arabidopsis thaliana. The role of BTS in root tissues has been well established. However, its role in shoot tissues has been scarcely studied. Comparative transcriptome analysis with shoot and root tissues revealed that BTS is involved in regulating energy metabolism by modulating expression of mitochondrial and chloroplast genes in shoot tissues. Moreover, in shoot tissues of bts-1 plants, levels of ADP and ATP and the ratio of ADP/ATP were greatly increased with a concomitant decrease in levels of soluble sugar and starch. The decreased starch level in bts-1 shoot tissues was restored to the level of shoot tissues of wild-type plants upon vanadate treatment. Through this study, we expand the role of BTS to regulation of energy metabolism in the shoot in addition to its role of iron deficiency response in roots.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) and funded by a grant from the Korea government (MSIT) (No. 2019R1A2B5B03099982).

References

  1. Allen, J.F. (2015). Why chloroplasts and mitochondria retain their own genomes and genetic systems: colocation for redox regulation of gene expression. Proc. Natl. Acad. Sci. U. S. A. 112, 10231-10238. https://doi.org/10.1073/pnas.1500012112
  2. Anders, S., Pyl, P.T., and Huber, W. (2015). HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166-169. https://doi.org/10.1093/bioinformatics/btu638
  3. Bolstad, B.M., Irizarry, R.A., Astrand, M., and Speed, T.P. (2003). A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19, 185-193. https://doi.org/10.1093/bioinformatics/19.2.185
  4. Chiu, W.L., Niwa, Y., Zeng, W., Hirano, T., Kobayashi, H., and Sheen, J. (1996). Engineered GFP as a vital reporter in plants. Curr. Biol. 6, 325-330. https://doi.org/10.1016/S0960-9822(02)00483-9
  5. Clough, S.J. and Bent, A.F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735-743. https://doi.org/10.1046/j.1365-313x.1998.00343.x
  6. Duby, G. and Boutry, M. (2009). The plant plasma membrane proton pump ATPase: a highly regulated P-type ATPase with multiple physiological roles. Pflugers Arch. 457, 645-655. https://doi.org/10.1007/s00424-008-0457-x
  7. Enomoto, Y., Hodoshima, H., Shimada, H., Shoji, K., Yoshihara, T., and Goto, F. (2007). Long-distance signals positively regulate the expression of iron uptake genes in tobacco roots. Planta 227, 81-89. https://doi.org/10.1007/s00425-007-0596-x
  8. Falhof, J., Pedersen, J.T., Fuglsang, A.T., and Palmgren, M. (2016). Plasma membrane H(+)-ATPase regulation in the center of plant physiology. Mol. Plant 9, 323-337. https://doi.org/10.1016/j.molp.2015.11.002
  9. Garcia, M.J., Romera, F.J., Stacey, M.G., Stacey, G., Villar, E., Alcantara, E., and Perez-Vicente, R. (2013). Shoot to root communication is necessary to control the expression of iron-acquisition genes in Strategy I plants. Planta 237, 65-75. https://doi.org/10.1007/s00425-012-1757-0
  10. Gratani, L., Pesoli, P., and Crescente, M.F. (1998). Relationship between photosynthetic activity and chlorophyll content in an isolated Quercus ilex L. tree during the year. Photosynthetica 35, 445-451. https://doi.org/10.1023/A:1006924621078
  11. Grillet, L., Lan, P., Li, W., Mokkapati, G., and Schmidt, W. (2018). IRON MAN is a ubiquitous family of peptides that control iron transport in plants. Nat. Plants 4, 953-963. https://doi.org/10.1038/s41477-018-0266-y
  12. Hennion, N., Durand, M., Vriet, C., Doidy, J., Maurousset, L., Lemoine, R., and Pourtau, N. (2019). Sugars en route to the roots. Transport, metabolism and storage within plant roots and towards microorganisms of the rhizosphere. Physiol. Plant. 165, 44-57. https://doi.org/10.1111/ppl.12751
  13. Hindt, M.N., Akmakjian, G.Z., Pivarski, K.L., Punshon, T., Baxter, I., Salt, D.E., and Guerinot, M.L. (2017). BRUTUS and its paralogs, BTS LIKE1 and BTS LIKE2, encode important negative regulators of the iron deficiency response in Arabidopsis thaliana. Metallomics 9, 876-890. https://doi.org/10.1039/C7MT00152E
  14. Hossain, M.A., Kamiya, T., Burritt, D.J., Phan Tran, L.S., and Fujiwara, T. (2018). Plant Micronutrient Use Efficiency: Molecular and Genomic Perspectives in Crop Plants (San Diego: Elsevier Science & Technology).
  15. Huang, D.W., Sherman, B.T., and Lempicki, R.A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44-57. https://doi.org/10.1038/nprot.2008.211
  16. Kaplan, J. and Ward, D.M. (2013). The essential nature of iron usage and regulation. Curr. Biol. 23, R642-R646. https://doi.org/10.1016/j.cub.2013.05.033
  17. Kobayashi, T. and Nishizawa, N.K. (2012). Iron uptake, translocation, and regulation in higher plants. Annu. Rev. Plant Biol. 63, 131-152. https://doi.org/10.1146/annurev-arplant-042811-105522
  18. Kobayashi, T. and Nishizawa, N.K. (2014). Iron sensors and signals in response to iron deficiency. Plant Sci. 224, 36-43. https://doi.org/10.1016/j.plantsci.2014.04.002
  19. Kobayashi, T., Nozoye, T., and Nishizawa, N.K. (2019). Iron transport and its regulation in plants. Free Radic. Biol. Med. 133, 11-20. https://doi.org/10.1016/j.freeradbiomed.2018.10.439
  20. Kramer, D.M., Johnson, G., Kiirats, O., and Edwards, G.E. (2004). New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynth. Res. 79, 209. https://doi.org/10.1023/b:pres.0000015391.99477.0d
  21. Kroh, G.E. and Pilon, M. (2019). Connecting the negatives and positives of plant iron homeostasis. New Phytol. 223, 1052-1055. https://doi.org/10.1111/nph.15933
  22. Kroh, G.E. and Pilon, M. (2020). Regulation of iron homeostasis and use in chloroplasts. Int. J. Mol. Sci. 21, 3395. https://doi.org/10.3390/ijms21093395
  23. Kumar, R., Pandey, S., and Pandey, A. (2006). Plant roots and carbon sequestration. Curr. Sci. 91, 885-890.
  24. Lee, C.P., Eubel, H., Solheim, C., and Millar, A.H. (2012a). Mitochondrial proteome heterogeneity between tissues from the vegetative and reproductive stages of Arabidopsis thaliana development. J. Proteome Res. 11, 3326-3343. https://doi.org/10.1021/pr3001157
  25. Lee, J., Choi, B., Yun, A., Son, N., Ahn, G., Cha, J.Y., Kim, W.Y., and Hwang, I. (2021). Long-term abscisic acid promotes golden2-like1 degradation through constitutive photomorphogenic 1 in a light intensity-dependent manner to suppress chloroplast development. Plant Cell Environ. 44, 3034-3048. https://doi.org/10.1111/pce.14130
  26. Lee, S., Kim, Y.S., Jeon, U.S., Kim, Y.K., Schjoerring, J.K., and An, G. (2012b). Activation of rice nicotianamine synthase 2 (OsNAS2) enhances iron availability for biofortification. Mol. Cells 33, 269-275. https://doi.org/10.1007/s10059-012-2231-3
  27. Leister, D. (2005). Genomics-based dissection of the cross-talk of chloroplasts with the nucleus and mitochondria in Arabidopsis. Gene 354, 110-116. https://doi.org/10.1016/j.gene.2005.03.039
  28. Lemoine, R., La Camera, S., Atanassova, R., Dedaldechamp, F., Allario, T., Pourtau, N., Bonnemain, J.L., Laloi, M., Coutos-Thevenot, P., Maurousset, L., et al. (2013). Source-to-sink transport of sugar and regulation by environmental factors. Front. Plant Sci. 4, 272. https://doi.org/10.3389/fpls.2013.00272
  29. Li, Z., Wu, Y., Xing, D., Zhang, K., Xie, J., Yu, R., Chen, T., and Duan, R. (2021). Effects of foliage spraying with sodium bisulfite on the photosynthesis of Orychophragmus violaceus. Horticulturae 7, 137. https://doi.org/10.3390/horticulturae7060137
  30. Lin, A., Shen, S., Wang, G., Yi, Q., Qiao, H., Niu, J., and Pan, G. (2011). Comparison of chlorophyll and photosynthesis parameters of floating and attached Ulva prolifera. J. Integr. Plant Biol. 53, 25-34. https://doi.org/10.1111/j.1744-7909.2010.01002.x
  31. Long, T.A., Tsukagoshi, H., Busch, W., Lahner, B., Salt, D.E., and Benfey, P.N. (2010). The bHLH transcription factor POPEYE regulates response to iron deficiency in Arabidopsis roots. Plant Cell 22, 2219-2236. https://doi.org/10.1105/tpc.110.074096
  32. Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10-12. https://doi.org/10.14806/ej.17.1.200
  33. McElver, J., Tzafrir, I., Aux, G., Rogers, R., Ashby, C., Smith, K., Thomas, C., Schetter, A., Zhou, Q., Cushman, M.A., et al. (2001). Insertional mutagenesis of genes required for seed development in Arabidopsis thaliana. Genetics 159, 1751-1763. https://doi.org/10.1093/genetics/159.4.1751
  34. Mendoza-Cozatl, D.G., Xie, Q., Akmakjian, G.Z., Jobe, T.O., Patel, A., Stacey, M.G., Song, L., Demoin, D.W., Jurisson, S.S., Stacey, G., et al. (2014). OPT3 is a component of the iron-signaling network between leaves and roots and misregulation of OPT3 leads to an over-accumulation of cadmium in seeds. Mol. Plant 7, 1455-1469. https://doi.org/10.1093/mp/ssu067
  35. Narsai, R., Law, S.R., Carrie, C., Xu, L., and Whelan, J. (2011). In-depth temporal transcriptome profiling reveals a crucial developmental switch with roles for RNA processing and organelle metabolism that are essential for germination in Arabidopsis. Plant Physiol. 157, 1342-1362. https://doi.org/10.1104/pp.111.183129
  36. Niittyla, T., Fuglsang, A.T., Palmgren, M.G., Frommer, W.B., and Schulze, W.X. (2007). Temporal analysis of sucrose-induced phosphorylation changes in plasma membrane proteins of Arabidopsis. Mol. Cell. Proteomics 6, 1711-1726. https://doi.org/10.1074/mcp.M700164-MCP200
  37. O'Neill, S.D. and Spanswick, R.M. (1984). Effects of vanadate on the plasma membrane ATPase of red beet and corn. Plant Physiol. 75, 586-591. https://doi.org/10.1104/pp.75.3.586
  38. Oh, Y.J., Kim, H., Seo, S.H., Hwang, B.G., Chang, Y.S., Lee, J., Lee, D.W., Sohn, E.J., Lee, S.J., Lee, Y., et al. (2016). Cytochrome b 5 reductase 1 triggers serial reactions that lead to iron uptake in plants. Mol. Plant 9, 501-513. https://doi.org/10.1016/j.molp.2015.12.010
  39. Okumura, M., Inoue, S.I., Kuwata, K., and Kinoshita, T. (2016). Photosynthesis activates plasma membrane H+-ATPase via sugar accumulation. Plant Physiol. 171, 580-589. https://doi.org/10.1104/pp.16.00355
  40. Palmgren, M.G. (2001). Plant plasma membrane H+-ATPases: powerhouses for nutrient uptake. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 817-845. https://doi.org/10.1146/annurev.arplant.52.1.817
  41. Rodriguez-Celma, J., Connorton, J.M., Kruse, I., Green, R.T., Franceschetti, M., Chen, Y.T., Cui, Y., Ling, H.Q., Yeh, K.C., and Balk, J. (2019). Arabidopsis BRUTUS-LIKE E3 ligases negatively regulate iron uptake by targeting transcription factor FIT for recycling. Proc. Natl. Acad. Sci. U. S. A. 116, 17584-17591. https://doi.org/10.1073/pnas.1907971116
  42. Santi, S. and Schmidt, W. (2009). Dissecting iron deficiency-induced proton extrusion in Arabidopsis roots. New Phytol. 183, 1072-1084. https://doi.org/10.1111/j.1469-8137.2009.02908.x
  43. Selote, D., Samira, R., Matthiadis, A., Gillikin, J.W., and Long, T.A. (2015). Iron-binding E3 ligase mediates iron response in plants by targeting basic helix-loop-helix transcription factors. Plant Physiol. 167, 273-286. https://doi.org/10.1104/pp.114.250837
  44. Shameer, S., Baghalian, K., Cheung, C.Y.M., Ratcliffe, R.G., and Sweetlove, L.J. (2018). Computational analysis of the productivity potential of CAM. Nat. Plants 4, 165-171. https://doi.org/10.1038/s41477-018-0112-2
  45. Shevtsov, S., Nevo-Dinur, K., Faigon, L., Sultan, L.D., Zmudjak, M., Markovits, M., and Ostersetzer-Biran, O. (2018). Control of organelle gene expression by the mitochondrial transcription termination factor mTERF22 in Arabidopsis thaliana plants. PLoS One 13, e0201631. https://doi.org/10.1371/journal.pone.0201631
  46. Trapnell, C., Pachter, L., and Salzberg, S.L. (2009). TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105-1111. https://doi.org/10.1093/bioinformatics/btp120
  47. Tzafrir, I., Pena-Muralla, R., Dickerman, A., Berg, M., Rogers, R., Hutchens, S., Sweeney, T.C., McElver, J., Aux, G., Patton, D., et al. (2004). Identification of genes required for embryo development in Arabidopsis. Plant Physiol. 135, 1206-1220. https://doi.org/10.1104/pp.104.045179
  48. Vert, G.G.A., Briat, J.F.O., and Curie, C. (2003). Dual regulation of the Arabidopsis high-affinity root iron uptake system by local and long-distance signals. Plant Physiol. 132, 796-804. https://doi.org/10.1104/pp.102.016089
  49. Wang, M., Lee, J., Choi, B., Park, Y., Sim, H.J., Kim, H., and Hwang, I. (2018). Physiological and molecular processes associated with long duration of ABA treatment. Front. Plant Sci. 9, 176. https://doi.org/10.3389/fpls.2018.00176
  50. Yan, F., Zhu, Y., Muller, C., Zorb, C., and Schubert, S. (2002). Adaptation of H+-pumping and plasma membrane H+ ATPase activity in proteoid roots of white lupin under phosphate deficiency. Plant Physiol. 129, 50-63. https://doi.org/10.1104/pp.010869
  51. Zhang, C., Romheld, V., and Marschner, H. (1996). Remobilization of iron from primary leaves of bean plants grown at various iron levels. J. Plant Nutr. 19, 1017-1028. https://doi.org/10.1080/01904169609365177
  52. Zhang, Y., Zhang, A., Li, X., and Lu, C. (2020). The role of chloroplast gene expression in plant responses to environmental stress. Int. J. Mol. Sci. 21, 6082. https://doi.org/10.3390/ijms21176082