과제정보
This work was supported by grants for Changzhou health young talents plan (CZQM2020103); Science and technology project for young talents of Changzhou Health Commission (QN202048); Changzhou Key Laboratory of High-tech Research (CM20193009). We thank all authors for their contributions. We would like thank Dr. Yongbing Ba for help in data processing.
참고문헌
- Abbas, Y., Turco, M.Y., Burton, G.J., and Moffett, A. (2020). Investigation of human trophoblast invasion in vitro. Hum. Reprod. Update 26, 501-513. https://doi.org/10.1093/humupd/dmaa017
- Aibar, S., Gonzalez-Blas, C.B., Moerman, T., Huynh-Thu, V.A., Imrichova, H., Hulselmans, G., Rambow, F., Marine, J.C., Geurts, P., Aerts, J., et al. (2017). SCENIC: single-cell regulatory network inference and clustering. Nat. Methods 14, 1083-1086. https://doi.org/10.1038/nmeth.4463
- Aran, D., Looney, A.P., Liu, L., Wu, E., Fong, V., Hsu, A., Chak, S., Naikawadi, R.P., Wolters, P.J., Abate, A.R., et al. (2019). Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol. 20, 163-172. https://doi.org/10.1038/s41590-018-0276-y
- Bai, K., Li, X., Zhong, J., Ng, E.H.Y., Yeung, W.S.B., Lee, C.L., and Chiu, P.C.N. (2021). Placenta-derived exosomes as a modulator in maternal immune tolerance during pregnancy. Front. Immunol. 12, 671093. https://doi.org/10.3389/fimmu.2021.671093
- Brenner, E., Tiwari, G.R., Kapoor, M., Liu, Y., Brock, A., and Mayfield, R.D. (2020). Single cell transcriptome profiling of the human alcohol-dependent brain. Hum. Mol. Genet. 29, 1144-1153. https://doi.org/10.1093/hmg/ddaa038
- Butler, A., Hoffman, P., Smibert, P., Papalexi, E., and Satija, R. (2018). Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411-420. https://doi.org/10.1038/nbt.4096
- Chang, C.W., Wakeland, A.K., and Parast, M.M. (2018). Trophoblast lineage specification, differentiation and their regulation by oxygen tension. J. Endocrinol. 236, R43-R56. https://doi.org/10.1530/JOE-17-0554
- Huang, Y., Lin, L., Shen, Z., Li, Y., Cao, H., Peng, L., Qiu, Y., Cheng, X., Meng, M., Lu, D., et al. (2020). CEBPG promotes esophageal squamous cell carcinoma progression by enhancing PI3K-AKT signaling. Am. J. Cancer Res. 10, 3328-3344.
- Ji, L., Brkic, J., Liu, M., Fu, G., Peng, C., and Wang, Y.L. (2013). Placental trophoblast cell differentiation: physiological regulation and pathological relevance to preeclampsia. Mol. Aspects Med. 34, 981-1023. https://doi.org/10.1016/j.mam.2012.12.008
- Jiang, F., Yang, Y., Li, J., Li, W., Luo, Y., Li, Y., Zhao, H., Wang, X., Yin, G., and Wu, G. (2015). Partial least squares-based gene expression analysis in preeclampsia. Genet. Mol. Res. 14, 6598-6604. https://doi.org/10.4238/2015.June.18.2
- Kaitu'u-Lino, T.J., Brownfoot, F.C., Hastie, R., Chand, A., Cannon, P., Deo, M., Tuohey, L., Whitehead, C., Hannan, N.J., and Tong, S. (2017). Activating transcription factor 3 is reduced in preeclamptic placentas and negatively regulates sFlt-1 (soluble fms-like tyrosine kinase 1), soluble endoglin, and proinflammatory cytokines in placenta. Hypertension 70, 1014-1024. https://doi.org/10.1161/HYPERTENSIONAHA.117.09548
- Knofler, M., Haider, S., Saleh, L., Pollheimer, J., Gamage, T., and James, J. (2019). Human placenta and trophoblast development: key molecular mechanisms and model systems. Cell. Mol. Life Sci. 76, 3479-3496. https://doi.org/10.1007/s00018-019-03104-6
- Kohan-Ghadr, H.R., Kilburn, B.A., Kadam, L., Johnson, E., Kolb, B.L., Rodriguez-Kovacs, J., Hertz, M., Armant, D.R., and Drewlo, S. (2019). Rosiglitazone augments antioxidant response in the human trophoblast and prevents apoptosis†. Biol. Reprod. 100, 479-494. https://doi.org/10.1093/biolre/ioy186
- Kruger, I., Vollmer, M., Simmons, D.G., Elsasser, H.P., Philipsen, S., and Suske, G. (2007). Sp1/Sp3 compound heterozygous mice are not viable: impaired erythropoiesis and severe placental defects. Dev. Dyn. 236, 2235-2244. https://doi.org/10.1002/dvdy.21222
- Lee, T. and Lee, H. (2021). Shared blood transcriptomic signatures between Alzheimer's disease and diabetes mellitus. Biomedicines 9, 34. https://doi.org/10.3390/biomedicines9010034
- Li, H., Huang, Q., Liu, Y., and Garmire, L.X. (2020). Single cell transcriptome research in human placenta. Reproduction 160, R155-R167. https://doi.org/10.1530/REP-20-0231
- Li, X., Wu, C., Shen, Y., Wang, K., Tang, L., Zhou, M., Yang, M., Pan, T., Liu, X., and Xu, W. (2018). Ten-eleven translocation 2 demethylates the MMP9 promoter, and its down-regulation in preeclampsia impairs trophoblast migration and invasion. J. Biol. Chem. 293, 10059-10070. https://doi.org/10.1074/jbc.RA117.001265
- Liu, Y., Fan, X., Wang, R., Lu, X., Dang, Y.L., Wang, H., Lin, H.Y., Zhu, C., Ge, H., Cross, J.C., et al. (2018). Single-cell RNA-seq reveals the diversity of trophoblast subtypes and patterns of differentiation in the human placenta. Cell Res. 28, 819-832. https://doi.org/10.1038/s41422-018-0066-y
- Marsh, B. and Blelloch, R. (2020). Single nuclei RNA-seq of mouse placental labyrinth development. Elife 9, e60266. https://doi.org/10.7554/eLife.60266
- Middleton, P., Shepherd, E., and Gomersall, J.C. (2021). Venous thromboembolism prophylaxis for women at risk during pregnancy and the early postnatal period. Cochrane Database Syst. Rev. 3, CD001689.
- Moslehi, R., Ambroggio, X., Nagarajan, V., Kumar, A., and Dzutsev, A. (2014). Nucleotide excision repair/transcription gene defects in the fetus and impaired TFIIH-mediated function in transcription in placenta leading to preeclampsia. BMC Genomics 15, 373. https://doi.org/10.1186/1471-2164-15-373
- Munro, S.K., Balakrishnan, B., Lissaman, A.C., Gujral, P., and Ponnampalam, A.P. (2021). Cytokines and pregnancy: potential regulation by histone deacetylases. Mol. Reprod. Dev. 88, 321-337. https://doi.org/10.1002/mrd.23430
- Nakashima, A., Shima, T., Tsuda, S., Aoki, A., Kawaguchi, M., Furuta, A., Yasuda, I., Yoneda, S., Yamaki-Ushijima, A., Cheng, S.B., et al. (2021). Aggrephagy deficiency in the placenta: a new pathogenesis of preeclampsia. Int. J. Mol. Sci. 22, 2432. https://doi.org/10.3390/ijms22052432
- Nirupama, R., Divyashree, S., Janhavi, P., Muthukumar, S.P., and Ravindra, P.V. (2021). Preeclampsia: pathophysiology and management. J. Gynecol. Obstet. Hum. Reprod. 50, 101975. https://doi.org/10.1016/j.jogoh.2020.101975
- Pavlicev, M., Wagner, G.P., Chavan, A.R., Owens, K., Maziarz, J., Dunn-Fletcher, C., Kallapur, S.G., Muglia, L., and Jones, H. (2017). Single-cell transcriptomics of the human placenta: inferring the cell communication network of the maternal-fetal interface. Genome Res. 27, 349-361. https://doi.org/10.1101/gr.207597.116
- Peng, Y., Jin, Z., Liu, H., and Xu, C. (2021). Impaired decidualization of human endometrial stromal cells from women with adenomyosis. Biol. Reprod. 104, 1034-1044. https://doi.org/10.1093/biolre/ioab017
- Piccinni, M.P., Raghupathy, R., Saito, S., and Szekeres-Bartho, J. (2021). Cytokines, hormones and cellular regulatory mechanisms favoring successful reproduction. Front. Immunol. 12, 717808. https://doi.org/10.3389/fimmu.2021.717808
- Pique-Regi, R., Romero, R., Tarca, A.L., Sendler, E.D., Xu, Y., Garcia-Flores, V., Leng, Y., Luca, F., Hassan, S.S., and Gomez-Lopez, N. (2019). Single cell transcriptional signatures of the human placenta in term and preterm parturition. Elife 8, e52004. https://doi.org/10.7554/elife.52004
- Redhead, M.L., Portilho, N.A., Felker, A.M., Mohammad, S., Mara, D.L., and Croy, B.A. (2016). The transcription factor NFIL3 is essential for normal placental and embryonic development but not for uterine natural killer (UNK) cell differentiation in mice. Biol. Reprod. 94, 101.
- Ridder, A., Giorgione, V., Khalil, A., and Thilaganathan, B. (2019). Preeclampsia: the relationship between uterine artery blood flow and trophoblast function. Int. J. Mol. Sci. 20, 3263. https://doi.org/10.3390/ijms20133263
- Selvaraju, S., Ramya, L., Parthipan, S., Swathi, D., Binsila, B.K., and Kolte, A.P. (2021). Deciphering the complexity of sperm transcriptome reveals genes governing functional membrane and acrosome integrities potentially influence fertility. Cell Tissue Res. 385, 207-222. https://doi.org/10.1007/s00441-021-03443-6
- Suo, S., Zhu, Q., Saadatpour, A., Fei, L., Guo, G., and Yuan, G.C. (2018). Revealing the critical regulators of cell identity in the mouse cell atlas. Cell Rep. 25, 1436-1445.e3. https://doi.org/10.1016/j.celrep.2018.10.045
- Tekola-Ayele, F., Zeng, X., Ouidir, M., Workalemahu, T., Zhang, C., Delahaye, F., and Wapner, R. (2020). DNA methylation loci in placenta associated with birthweight and expression of genes relevant for early development and adult diseases. Clin. Epigenetics 12, 78. https://doi.org/10.1186/s13148-020-00873-x
- Than, N.G., Romero, R., Tarca, A.L., Kekesi, K.A., Xu, Y., Xu, Z., Juhasz, K., Bhatti, G., Leavitt, R.J., Gelencser, Z., et al. (2018). Integrated systems biology approach identifies novel maternal and placental pathways of preeclampsia. Front. Immunol. 9, 1661. https://doi.org/10.3389/fimmu.2018.01661
- Tsang, J.C.H., Vong, J.S.L., Ji, L., Poon, L.C.Y., Jiang, P., Lui, K.O., Ni, Y.B., To, K.F., Cheng, Y.K.Y., Chiu, R.W.K., et al. (2017). Integrative single-cell and cell-free plasma RNA transcriptomics elucidates placental cellular dynamics. Proc. Natl. Acad. Sci. U. S. A. 114, E7786-E7795.
- Vento-Tormo, R., Efremova, M., Botting, R.A., Turco, M.Y., Vento-Tormo, M., Meyer, K.B., Park, J.E., Stephenson, E., Polanski, K., Goncalves, A., et al. (2018). Single-cell reconstruction of the early maternal-fetal interface in humans. Nature 563, 347-353. https://doi.org/10.1038/s41586-018-0698-6
- Xueya, Z., Yamei, L., Sha, C., Dan, C., Hong, S., Xingyu, Y., and Weiwei, C. (2020). Exosomal encapsulation of miR-125a-5p inhibited trophoblast cell migration and proliferation by regulating the expression of VEGFA in preeclampsia. Biochem. Biophys. Res. Commun. 525, 646-653. https://doi.org/10.1016/j.bbrc.2020.02.137
- Yang, Y., Guo, F., Peng, Y., Chen, R., Zhou, W., Wang, H., OuYang, J., Yu, B., and Xu, Z. (2021). Transcriptomic profiling of human placenta in gestational diabetes mellitus at the single-cell level. Front. Endocrinol. (Lausanne) 12, 679582. https://doi.org/10.3389/fendo.2021.679582