DOI QR코드

DOI QR Code

New mathematical approach to determine solar radiation for the southwestern coastline of Pakistan

  • Atteeq Razzak (Department of Mathematics, University of Karachi) ;
  • Zaheer Uddin (Department of Physics, University of Karachi) ;
  • M. Jawed Iqbal (Institute of Space Science & Technology, University of Karachi)
  • Received : 2021.05.15
  • Accepted : 2022.07.27
  • Published : 2022.06.25

Abstract

Solar Energy is the energy of solar radiation carried by them in the form of heat and light. It can be converted into electricity. Solar potential depends on the site's atmosphere; the solar energy distribution depends on many factors, e.g., turbidity, cloud types, pollution levels, solar altitude, etc. We estimated solar radiation with the help of the Ashrae clear-sky model for three locations in Pakistan, namely Pasni, Gwadar, and Jiwani. As these locations are close to each other as compared to the distance between the sun and earth, therefore a slight change of latitude and longitude does not make any difference in the calculation of direct beam solar radiation (BSR), diffuse solar radiation (DSR), and global solar radiation (GSR). A modified formula for declination angle is also developed and presented. We also created two different models for Ashrae constants. The values of these constants are compared with the standard Ashrae Model. A good agreement is observed when we used these constants to calculate BSR, DSR, GSR, the Root mean square error (RMSE), Mean Absolute error (MABE), Mean Absolute percent error (MAPE), and chisquare (χ2) values are in acceptance range, indicating the validity of the models.

Keywords

References

  1. Abdalla, Y.A. and Al-Madani, H. (1992), "A new method for estimating daily global solar radiation", Int. J. Ambient Energy, 13(2), 93-98. http://doi.org/10.1080/01430750.1992.9675559
  2. Agbulut, U., Gurel, A.E. and Bicen, Y. (2021), "Prediction of daily global solar radiation using different machine learning algorithms: Evaluation and comparison", Renew. Sustain. Energy Rev., 135, 110114. http://doi.org/10.1016/j.rser.2020.110114
  3. Amrouche, B. and Le Pivert, X. (2014), "Artificial neural network based daily local forecasting for global solar radiation", Appl. Energy, 130, 333-341. http://doi.org/10.1016/j.apenergy.2014.05.055
  4. Aras, H., Balli, O. and Hepbasli, A. (2006), "Global solar radiation potential, part 1: model development", Energy Sources, 1(3), 303-315.http://doi.org/10.1016/j.apenergy.2014.05.055
  5. Bakirci, K. (2009), "Estimation of solar radiation by using ASHRAE clear-sky model in Erzurum, Turkey", Energy Sources, Part A, 31(3), 208-216.http://doi.org/10.1080/15567030701522534
  6. Besharat, F., Dehghan, A.A. and Faghih, A.R. (2013), "Empirical models for estimating global solar radiation: A review and case study", Renew. Sustain. Energy Rev., 21, 798-821. http://doi.org/10.1016/j.rser.2012.12.043
  7. Cooper, P. (1969), "The absorption of radiation in solar stills", Solar Energy, 12(3), 333-346. http://doi.org/10.1016/0038-092X(69)90047-4
  8. Demain, C., Journee, M. and Bertrand, C. (2013), "Evaluation of different models to estimate the global solar radiation on inclined surfaces", Renew. Energy, 50, 710-721. http://doi.org/10.1016/j.renene.2012.07.031
  9. Despotovic, M., Nedic, V., Despotovic, D. and Cvetanovic, S. (2015), "Review and statistical analysis of different global solar radiation sunshine models", Renew. Sustain. Energy Rev., 52, 1869-1880. http://doi.org/10.1016/j.rser.2015.08.035
  10. Feng, Y., Hao, W., Li, H., Cui, N., Gong, D. and Gao, L. (2020), "Machine learning models to quantify and map daily global solar radiation and photovoltaic power", Renew. Sustain. Energy Rev., 118, 109393. http://doi.org/10.1016/j.rser.2019.109393
  11. Hassan, G.E., Youssef, M.E., Mohamed, Z.E., Ali, M.A. and Hanafy, A.A. (2016), "New temperature-based models for predicting global solar radiation", Appl. Energy, 179, 437-450. http://doi.org/10.1016/j.apenergy.2016.07.006.
  12. Iqbal, M. (2012), An introduction to solar radiation, Elsevier.
  13. Jamil, B. and Khan, M.M. (2014), "Estimation of clear-sky solar radiation using ASHRAE model for Aligarh, India", Int. J. Eng. Res. Technol., 227-236.
  14. Kaba, K., Sarigul, M., Avci, M. and Kandirmaz, H.M. (2018), "Estimation of daily global solar radiation using deep learning model", Energy, 162, 126-135. http://doi.org/10.1016/j.energy.2018.07.202
  15. Khalid, H. and Zakaria, M. (2016), "Estimation of solar radiation in southern areas of Pakistan using radiation models", J. Renew. Sustain. Energy, 8(4), 043701. http://doi.org/10.1063/1.4955074
  16. Khattak, T.M. (2016), "An effective seaward defense-pre-requisite for success of CPEC", Defence Journal, 19(9), 32.
  17. Kuhe, A., Achirgbenda, V.T. and Agada, M. (2021), "Global solar radiation prediction for Makurdi, Nigeria, using neural networks ensemble", Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 43(11), 1373-1385. http://doi.org/10.1080/15567036.2019.1637481
  18. Lashari, M.I. and Khushk, A.M. (2007), "Issues and options in the production of high value crops in coastal region of Pakistan", Sarhad J. Agricul., 23(3), 593. https://doi.org/10.3329/bjar.v32i3.537
  19. Li, M.F., Tang, X.P., Wu, W. and Liu, H.B. (2013), "General models for estimating daily global solar radiation for different solar radiation zones in mainland China", Energy Convers. Manag., 70, 139-148. http://doi.org/10.1016/j.enconman.2013.03.004
  20. Makade, R.G., Chakrabarti, S., Jamil, B. and Sakhale, C.N. (2020), "Estimation of global solar radiation for the tropical wet climatic region of India: A theory of experimentation approach", Renew. Energy, 146, 2044-2059. http://doi.org/10.1016/j.renene.2019.08.054
  21. Mansoor, A., Sultana, B., Shafique, S. and Zaman, K. (2019), "The water-energy-food resources and environment: Evidence from selected SAARC countries", Adv. Energy Res., Int. J., 6(1), 1-15. http://doi.org/10.12989/eri.2019.6.1.001
  22. Mousavi Maleki, S.A., Hizam, H. and Gomes, C. (2017), "Estimation of hourly, daily and monthly global solar radiation on inclined surfaces: Models re-visited", Energies, 10(1), 134. http://doi.org/10.3390/en10010134
  23. Pakistan, M. (2016), "A Handbook on Pakistan's Coastal and Marine Resources", MFF Pakistan: Karachi, Pakistan.
  24. Parishwad, G.V., Bhardwaj, R.K. and Nema, V.K. (1997), "Estimation of hourly solar radiation for India", Renew. Energy, 12(3), 303-313. http://doi.org/10.1016/S0960-1481(97)00039-6
  25. Quansah, E., Amekudzi, L.K., Preko, K., Aryee, J., Boakye, O.R., Boli, D. and Salifu, M.R. (2014), "Empirical models for estimating global solar radiation over the Ashanti region of Ghana", 2014(3), 1-6. http://doi.org/10.1155/2014/897970.http://doi.org/10.1155/2014/897970
  26. Rabehi, A., Guermoui, M. and Lalmi, D. (2020), "Hybrid models for global solar radiation prediction: a case study", Int. J. Ambient Energy, 41(1), 31-40. http://doi.org/10.1080/01430750.2018.1443498
  27. Sajjad, S.H., Hussain, B., Ahmed Khan, M., Raza, A., Zaman, B. and Ahmed, I. (2009), "On rising temperature trends of Karachi in Pakistan", Climatic Change, 96(4), 539-547. https://doi.org/10.1007/s10584-009-9598-y
  28. Spencer, J.W. (1971), "Fourier series reprensentation of the position of the sun", Search, 2(5), 172.
  29. Urooj, R. and Ahmad, S.S. (2017), "Assessment of electricity demand at domestic level in Balochistan, Pakistan", Adv. Energy Res., Int. J., 5(1), 57-64. http://doi.org/10.12989/eri.2017.5.1
  30. Wang, L., Kisi, O., Zounemat-Kermani, M., Salazar, G.A., Zhu, Z. and Gong, W. (2016), "Solar radiation prediction using different techniques: model evaluation and comparison", Renew. Sustain. Energy Rev., 61, 384-397. https://doi.org/10.1016/j.rser.2016.04.024