References
- Abid, M., Karimov, K.S., Wajid, H.A., Farooq, F., Ahmed, H. and Khan, O.H. (2015), "Design, development and testing of a combined Savonius and Darrieus vertical axis wind turbine", Iran. J. Energy Environ., 6(1), 1-4.
- Adaramola, M.S., Agelin-Chaab, M. and Paul, S.S. (2014), "Assessment of wind power generation along the coast of Ghana", Energy Convers. Manag., 77, 61-69. https://doi.org/10.1016/j.enconman.2013.09.005
- Akdag, S.A. and Dinler, A. (2009), "A new method to estimate Weibull parameters for wind energy applications", Energy Convers. Manag., 50(7), 1761-1766. https://doi.org/10.1016/j.enconman.2009.03.020
- Akgul, F.G., Senoglu, B. and Arslan, T. (2016), "An alternative distribution to Weibull for modeling the wind speed data: Inverse Weibull distribution", Energy Convers. Manag., 114, 234-240. https://doi.org/10.1016/j.enconman.2016.02.026
- Arik, I., Kantar, Y.M. and Usta, I. (2019), "The new odd-burr rayleigh distribution for wind speed characterization", Wind Struct., Int. J., 28(6), 369-380. https://doi.org/10.12989/was.2019.28.6.369
- Arslan, T., Bulut, Y.M. and Yavuz, A.A. (2014), "Comparative study of numerical methods for determining Weibull parameters for wind energy potential", Renew. Sustain. Energy Rev., 40, 820-825. https://doi.org/10.1016/j.rser.2014.08.009
- Baloch, M.H., Kaloi, G.S. and Memon, Z.A. (2016), "Current scenario of the wind energy in Pakistan challenges and future perspectives: A case study", Energy Reports, 2, 201-210. https://doi.org/10.1016/j.egyr.2016.08.002
- Bilir, L., Imir, M., Devrim, Y. and Albostan, A. (2015), "Seasonal and yearly wind speed distribution and wind power density analysis based on Weibull distribution function", Int. J. Hydrogen Energy, 40(44), 15301-15310. https://doi.org/10.1016/j.ijhydene.2015.04.140
- Carta, J.A., Ramirez, P. and Velazquez, S. (2009), "A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands", Renew. Sustain. Energy Rev., 13(5), 933-955. https://doi.org/10.1016/j.rser.2008.05.005
- Chai, T. and Draxler, R.R. (2014), "Root mean square error (RMSE) or mean absolute error (MAE)-Arguments against avoiding RMSE in the literature", Geosci. Model Develop., 7(3), 1247-1250. https://doi.org/10.5194/gmd-7-1247-2014
- Chang, T.P. (2011), "Estimation of wind energy potential using different probability density functions", Appl. Energy, 88(5), 1848-1856. https://doi.org/10.1016/j.apenergy.2010.11.010
- Deep, S., Sarkar, A., Ghawat, M. and Rajak, M.K. (2020), "Estimation of the wind energy potential for coastal locations in India using the Weibull model", Renew. Energy, 161, 319-339. https://doi.org/10.1016/j.renene.2020.07.054
- Gugliani, G.K., Sarkar, A., Ley, C. and Mandal, S. (2018), "New methods to assess wind resources in terms of wind speed, load, power and direction", Renew. Energy, 129, 168-182. https://doi.org/10.1016/j.renene.2018.05.088
- Gugliani, G.K., Sarkar, A., Ley, C. and Matsagar, V. (2021), "Identification of optimum wind turbine parameters for varying wind climates using a novel month-based turbine performance index", Renew. Energy, 171, 902-914. https://doi.org/10.1016/j.renene.2021.02.141
- Justus, C.G. and Mikhail, A. (1976), "Height variation of wind speed and wind distributions statistics", Geophys. Res. Lett., 3(5), 261-264. https://doi.org/10.1029/GL003i005p00261
- Kadhem, A.A., Abdul Wahab, N.I., Aris, I., Jasni, J. and Abdalla, A.N. (2017), "Advanced wind speed prediction model based on a combination of Weibull distribution and an artificial neural network", Energies, 10(11), 1744. https://doi.org/10.3390/en10111744
- Khahro, S.F., Tabbassum, K., Soomro, A.M., Liao, X., Alvi, M.B., Dong, L. and Manzoor, M.F. (2014), "Techno-economical evaluation of wind energy potential and analysis of power generation from wind at Gharo, Sindh Pakistan", Renew. Sustain. Energy Rev., 35, 460-474. https://doi.org/10.1016/j.rser.2014.04.027
- Khan, J.K., Ahmed, F., Uddin, Z., Iqbal, S.T., Jilani, S.U., Siddiqui, A.A. and Aijaz, A. (2015), "Determination of Weibull parameter by four numerical methods and prediction of wind speed in Jiwani (Balochistan)", J. Basic Appl. Sci., 11, 62-68. https://doi.org/10.6000/1927-5129.2015.11.30
- Khan, M.T.I., Ali, Q. and Ashfaq, M. (2018), "The nexus between greenhouse gas emission, electricity production, renewable energy and agriculture in Pakistan", Renew. Energy, 118, 437-451. https://doi.org/10.1016/j.renene.2017.11.043
- Lun, I.Y. and Lam, J.C. (2000), "A study of Weibull parameters using long-term wind observations", Renew. Energy, 20(2), 145-153. https://doi.org/10.1016/S0960-1481(99)00103-2
- Mahmood, F.H., Resen, A.K. and Khamees, A.B. (2020), "Wind characteristic analysis based on Weibull distribution of Al-Salman site, Iraq", Energy Reports, 6, 79-87. https://doi.org/10.1016/j.egyr.2019.10.021
- Mohammadi, K., Alavi, O., Mostafaeipour, A., Goudarzi, N. and Jalilvand, M. (2016), "Assessing different parameters estimation methods of Weibull distribution to compute wind power density", Energy Convers. Manag., 108, 323-335. https://doi.org/10.1016/j.enconman.2015.11.015
- Mohiuddin, O., Mohiuddin, A., Obaidullah, M., Ahmed, H. and Asumadu-Sarkodie, S. (2016), "Electricity production potential and social benefits from rice husk, a case study in Pakistan", Cogent Eng., 3(1), 1177156. https://doi.org/10.1080/23311916.2016.1177156
- Rehman, A. and Deyuan, Z. (2018), "Investigating the linkage between economic growth, electricity access, energy use, and population growth in Pakistan", Appl. Sci., 8(12), 2442. https://doi.org/10.3390/app8122442
- Rocha, P.A.C., de Sousa, R.C., de Andrade, C.F. and da Silva, M.E.V. (2012), "Comparison of seven numerical methods for determining Weibull parameters for wind energy generation in the northeast region of Brazil", Appl. Energy, 89(1), 395-400. https://doi.org/10.1016/j.apenergy.2011.08.003
- Saeed, M.K., Salam, A., Rehman, A.U. and Saeed, M.A. (2019), "Comparison of six different methods of Weibull distribution for wind power assessment: A case study for a site in the Northern region of Pakistan", Sustain. Energy Technol. Assess., 36, 100541. https://doi.org/10.1016/j.seta.2019.100541
- Safari, B. and Gasore, J. (2010), "A statistical investigation of wind characteristics and wind energy potential based on the Weibull and Rayleigh models in Rwanda", Renew. Energy, 35(12), 2574-2880. https://doi.org/10.1016/j.renene.2010.04.032
- Salahaddin, A.A. (2013), "Comparative study of four methods for estimating Weibull parameters for Halabja, Iraq", Int. J. Phys. Sci., 8(5), 186-192. https://doi.org/10.5897/IJPS12.697
- Sarkar, A., Gugliani, G. and Deep, S. (2017), "Weibull model for wind speed data analysis of different locations in India", KSCE J. Civil Eng., 21(7), 2764-2776. https://doi.org/10.1007/s12205-017-0538-5
- Seguro, J.V. and Lambert, T.W. (2000), "Modern estimation of the parameters of the Weibull wind speed distribution for wind energy analysis", J. Wind Eng. Indust. Aerodyn., 85(1), 75-84. https://doi.org/10.1016/S0167-6105(99)00122-1
- Sukkiramathi, K., Rajkumar, R. and Seshaiah, C.V. (2020), "Mathematical representation to assess the wind resource by three parameter Weibull distribution", Wind Struct., Int. J., 31(5), 419-430. https://doi.org/10.12989/was.2020.31.5.419
- Sumair, M., Aized, T., Gardezi, S.A.R., Bhutta, M.M.A., Rehman, S.M.S. and Ur Rehman, S.U. (2020), "Comparison of three probability distributions and techno-economic analysis of wind energy production along the coastal belt of Pakistan", Energy Explorat. Exploitat., 0144598720931587. https://doi.org/10.1177/0144598720931587
- Teyabeen, A.A., Akkari, F.R. and Jwaid, A.E. (2018), "Mathematical Modelling of Wind Turbine Power Curve", Int. J. Simul. Syst. Sci. Technol., 19(5), 1-13. https://doi.org/10.5013/IJSSST.a.19.05.15
- Tizgui, I., El Guezar, F., Bouzahir, H. and Benaid, B. (2017), "Comparison of methods in estimating Weibull parameters for wind energy applications", Int. J. Energy Sector Manag. https://doi.org/10.1108/IJESM-06-2017-0002
- Ullah, K. (2013), "Electricity infrastructure in Pakistan: an overview", Int. J. Energy Inform. Commun., 4(3), 11-26.
- Usta, I. (2016), "An innovative estimation method regarding Weibull parameters for wind energy applications", Energy, 106, 301-314. https://doi.org/10.1016/j.energy.2016.03.068
- Voinov, V., Pya, N., Makarov, R. and Voinov, Y. (2016), "New invariant and consistent chi-squared type goodness-of-fit tests for multivariate normality and a related comparative simulation study", Commun. Statist. - Theory and Methods, 45(11), 3249-3263. https://doi.org/10.1080/03610926.2014.901370
- Wadi, M. and Elmasry, W. (2021), "Statistical analysis of wind energy potential using different estimation methods for Weibull parameters: a case study", Electr. Eng., 103, 2573-2594. https://doi.org/10.1007/s00202-021-01254-0
- Wakeel, M., Chen, B. and Jahangir, S. (2016), "Overview of energy portfolio in Pakistan", Energy Procedia, 88, 71-75. https://doi.org/10.1016/j.egypro.2016.06.024
- Zameer, H. and Wang, Y. (2018) "Energy production system optimization: Evidence from Pakistan", Renew. Sustain. Energy Rev., 82, 886-893. https://doi.org/10.1016/j.rser.2017.09.089
- Zhou, J., Erdem, E., Li, G. and Shi, J. (2010), "Comprehensive evaluation of wind speed distribution models: A case study for North Dakota sites", Energy Convers. Manag., 51(7), 1449-1458. https://doi.org/10.1016/j.enconman.2010.01.020