DOI QR코드

DOI QR Code

High-velocity ballistics of twisted bilayer graphene under stochastic disorder

  • Gupta, K.K. (Department of Mechanical Engineering, National Institute of Technology Silchar) ;
  • Mukhopadhyay, T. (Department of Aerospace Engineering, Indian Institute of Technology Kanpur) ;
  • Roy, L. (Department of Mechanical Engineering, National Institute of Technology Silchar) ;
  • Dey, S. (Department of Mechanical Engineering, National Institute of Technology Silchar)
  • Received : 2021.09.20
  • Accepted : 2022.03.18
  • Published : 2022.05.25

Abstract

Graphene is one of the strongest, stiffest, and lightest nanoscale materials known to date, making it a potentially viable and attractive candidate for developing lightweight structural composites to prevent high-velocity ballistic impact, as commonly encountered in defense and space sectors. In-plane twist in bilayer graphene has recently revealed unprecedented electronic properties like superconductivity, which has now started attracting the attention for other multi-physical properties of such twisted structures. For example, the latest studies show that twisting can enhance the strength and stiffness of graphene by many folds, which in turn creates a strong rationale for their prospective exploitation in high-velocity impact. The present article investigates the ballistic performance of twisted bilayer graphene (tBLG) nanostructures. We have employed molecular dynamics (MD) simulations, augmented further by coupling gaussian process-based machine learning, for the nanoscale characterization of various tBLG structures with varying relative rotation angle (RRA). Spherical diamond impactors (with a diameter of 25Å) are enforced with high initial velocity (Vi) in the range of 1 km/s to 6.5 km/s to observe the ballistic performance of tBLG nanostructures. The specific penetration energy (Ep*) of the impacted nanostructures and residual velocity (Vr) of the impactor are considered as the quantities of interest, wherein the effect of stochastic system parameters is computationally captured based on an efficient Gaussian process regression (GPR) based Monte Carlo simulation approach. A data-driven sensitivity analysis is carried out to quantify the relative importance of different critical system parameters. As an integral part of this study, we have deterministically investigated the resonant behaviour of graphene nanostructures, wherein the high-velocity impact is used as the initial actuation mechanism. The comprehensive dynamic investigation of bilayer graphene under the ballistic impact, as presented in this paper including the effect of twisting and random disorder for their prospective exploitation, would lead to the development of improved impact-resistant lightweight materials.

Keywords

Acknowledgement

KKG is grateful for the financial support from MoE, India during the research work. TM acknowledges the initiation grants received from IIT Kanpur.

References

  1. Adhikari, S. and Chowdhury, R. (2012), "Zeptogram sensing from gigahertz vibration: Graphene based nanosensor", Physica E, 44(7-8), 1528-1534. https://doi.org/10.1016/j.physe.2012.03.021.
  2. A vila, A.F., Neto, A.S. and Junior, H.N. (2011), "Hybrid nanocomposites for mid-range ballistic protection", Int. J. Impact Eng., 38(8-9), 669-676. https://doi.org/10.1016/j.ijimpeng.2011.03.002.
  3. Azevedo, D.L., Bizao, R.A. and Galvao, D.S. (2018), "Molecular dynamics simulations of ballistic penetration of penta-graphene sheets", MRS Adv., 3(8-9), 433-437. https://doi.org/10.1557/adv.2018.61.
  4. Bizao, R.A., Machado, L.D., de Sousa, J.M., Pugno, N.M. and Galvao, D.S. (2018), "Scale effects on the ballistic penetration of graphene sheets", Sci. Rep., 8(1), 1-8. https://doi.org/10.1038/s41598-018-25050-2.
  5. Burn, M.J. and Popelier, P.L. (2020), "Creating Gaussian process regression models for molecular simulations using adaptive sampling", J. Chem. Phys., 153(5), 054111. https://doi.org/10.1063/5.0017887.
  6. Chandra, Y., Adhikari, S., Mukherjee, S. and Mukhopadhyay, T. (2022), "Unfolding the mechanical properties of buckypaper composites: Nano-to macro-scale coupled atomistic-continuum simulations", Eng. Comput., 1-31. https://doi.org/10.1007/s00366-021-01538-w.
  7. Chandra, Y., Mukhopadhyay, T. and Adhikari, S. (2020), "Size-dependent dynamic characteristics of graphene based multilayer nano hetero-structures", Nanotechnology, 31(14), 145705. https://doi.org/10.1088/1361-6528/ab6231.
  8. Cui, Y., Kundalwal, S.I. and Kumar, S. (2016), "Gas barrier performance of graphene/polymer nanocomposites", Carbon, 98, 313-333. https://doi.org/10.1016/j.carbon.2015.11.018.
  9. Deringer, V.L., Bartok, A.P., Bernstein, N., Wilkins, D.M., Ceriotti, M. and Csanyi, G. (2021), "Gaussian process regression for materials and molecules", Chem. Rev., 121(16), 10073-10141. https://doi.org/10.1021/acs.chemrev.1c00022.
  10. Dewapriya, M.A.N. and Meguid, S.A. (2019), "Comprehensive molecular dynamics studies of the ballistic resistance of multilayer graphene-polymer composite", Comput. Mater. Sci., 170, 09171. https://doi.org/10.1016/j.commatsci.2019.109171.
  11. Dewapriya, M.A.N. and Miller, R.E. (2021), "Energy absorption mechanisms of nanoscopic multilayer structures under ballistic impact loading", Comput. Mater. Sci., 195, 110504. https://doi.org/10.1016/j.commatsci.2021.110504.
  12. Farazin, A. and Mohammadimehr, M. (2020), "Nano research for investigating the effect of SWCNTs dimensions on the properties of the simulated nanocomposites: a molecular dynamics simulation", Adv. Nano Res., 9(2), 83-90. https://doi.org/10.12989/anr.2020.9.2.083.
  13. Fazelzadeh, S.A. and Ghavanloo, E. (2014), "Nanoscale mass sensing based on vibration of single-layered graphene sheet in thermal environments", Acta Mech. Sinica, 30(1), 84-91. https://doi.org/10.1007/s10409-013-0102-6.
  14. Geim, A.K. and Novoselov, K.S. (2010), The Rise of Graphene, In Nanoscience and Technology: A Collection of Reviews from Nature Journals, World Scientific.
  15. Gupta, K.K., Mukhopadhyay, T., Roy, A. and Dey, S. (2020), "Probing the compound effect of spatially varying intrinsic defects and doping on mechanical properties of hybrid graphene monolayers", J. Mater. Sci. Technol., 50, 44-58. https://doi.org/10.1016/j.jmst.2020.03.004.
  16. Gupta, K.K., Mukhopadhyay, T., Roy, A., Roy, L. and Dey, S. (2021), "Sparse machine learning assisted deep computational insights on the mechanical properties of graphene with intrinsic defects and doping", J. Phys. Chem. Solids, 155, 110111. https://doi.org/10.1016/j.jpcs.2021.110111.
  17. Gupta, K.K., Roy, L. and Dey, S. (2022a), Machine Learning-Based Molecular Dynamics Simulations of Monolayered Graphene, In Recent Advances in Computational and Experimental Mechanics, Springer, Singapore.
  18. Gupta, K.K., Mukhopadhyay, T., Roy, L. and Dey, S. (2022b), "Hybrid machine-learning-assisted quantification of the compound internal and external uncertainties of graphene: Towards inclusive analysis and design", Mater. Adv., 3, 1160-1181. https://doi.org/10.1039/D1MA00880C.
  19. Haque, B.Z.G., Chowdhury, S.C. and Gillespie Jr, J.W. (2016), "Molecular simulations of stress wave propagation and perforation of graphene sheets under transverse impact", Carbon, 102, 126-140. https://doi.org/10.1016/j.carbon.2016.02.033.
  20. Hosseini-Hashemi, S., Sepahi-Boroujeni, A. and Sepahi-Boroujeni, S. (2018), "Analytical and molecular dynamics studies on the impact loading of single-layered graphene sheet by fullerene", Appl. Surface Sci., 437, 366-374. https://doi.org/10.1016/j.apsusc.2017.12.141.
  21. Humphrey, W., Dalke, A. and Schulten, K. (1996), "VMD: Visual molecular dynamics", J. Mol. Graph., 14(1), 33-38. https://doi.org/10.1016/0263-7855(96)00018-5.
  22. Kang, J.W., Kim, H.W., Kim, K.S. and Lee, J.H. (2013), "Molecular dynamics modeling and simulation of a graphene-based nanoelectromechanical resonator", Curr. Appl. Phys., 13(4), 789-794. https://doi.org/10.1016/j.cap.2012.12.007.
  23. Kashyap, J., Yang, E.H. and Datta, D. (2020), "Computational study of the water-driven graphene wrinkle life-cycle towards applications in flexible electronics", Sci. Rep., 10(1), 1-15. https://doi.org/10.1038/s41598-020-68080-5.
  24. Kwon, O.K., Lee, J.H., Park, J., Kim, K.S. and Kang, J.W. (2013), "Molecular dynamics simulation study on graphene-nanoribbon-resonators tuned by adjusting axial strain", Current Applied Physics, 13(2), 360-365. https://doi.org/10.1016/j.cap.2012.08.009.
  25. Kwon, S.R., Harris, J., Zhou, T., Loufakis, D., Boyd, J.G. and Lutkenhaus, J.L. (2017), "Mechanically strong graphene/aramid nanofiber composite electrodes for structural energy and power", ACS Nano, 11(7), 6682-6690. https://doi.org/10.1021/acsnano.7b00790.
  26. Lee, C., Wei, X., Kysar, J.W. and Hone, J. (2008), "Measurement of the elastic properties and intrinsic strength of monolayer graphene", Science, 321(5887), 385-388. https://doi.org/10.1126/science.1157996.
  27. Lee, J.H., Loya, P.E., Lou, J. and Thomas, E.L. (2014), "Dynamic mechanical behavior of multilayer graphene via supersonic projectile penetration", Science, 346(6213), 1092-1096. https://doi.org/10.1126/science.1258544.
  28. Li, Z., He, Q., Xu, X., Zhao, Y., Liu, X., Zhou, C., Ai, D., Xia, L. and Mai, L. (2018), "A 3D nitrogen-doped graphene/TiN nanowires composite as a strong polysulfide anchor for lithium-sulfur batteries with enhanced rate performance and high areal capacity", Adv. Mater., 30(45), 1804089. https://doi.org/10.1002/adma.201804089.
  29. Lin, F., Xiang, Y. and Shen, H.S. (2017), "Temperature dependent mechanical properties of graphene reinforced polymer nanocomposites-a molecular dynamics simulation", Compos. Part B Eng., 111, 261-269. https://doi.org/10.1016/j.compositesb.2016.12.004.
  30. Mahata, A., Mukhopadhyay, T. and Adhikari, S. (2016), "A polynomial chaos expansion based molecular dynamics study for probabilistic strength analysis of nano-twinned copper", Mater. Res. Exp., 3(3), 036501. https://doi.org/10.1088/2053-1591/3/3/036501.
  31. MATLAB (2018), Version 18.10.0 (R2018a). https://www.mathworks.in
  32. Mukhopadhyay, T., Mahata, A., Dey, S. and Adhikari, S. (2016), "Probabilistic analysis and design of HCP nanowires: An efficient surrogate based molecular dynamics simulation approach", J. Mater. Sci. Technol., 32(12), 1345-1351. https://doi.org/10.1016/j.jmst.2016.07.019.
  33. Mukhopadhyay, T., Mahata, A., Adhikari, S. and Zaeem, M. (2017a), "Effective mechanical properties of multilayer nanoheterostructures", Sci. Rep., 7(1), 1-13. https://doi.org/10.1038/s41598-017-15664-3.
  34. Mukhopadhyay, T., Mahata, A., Adhikari, S., and Zaeem, M. A. (2017b), "Effective elastic properties of two dimensional multiplanar hexagonal nanostructures", 2D Mater., 4(2), 025006. https://doi.org/10.1088/2053-1583/aa551c.
  35. Mukhopadhyay, T., Mahata, A., Naskar, S. and Adhikari, S. (2020), "Probing the effective Young's modulus of 'magic angle'inspired multi-functional twisted nano-heterostructures", Adv. Theory Simul., 3(10), 2000129. https://doi.org/10.1002/adts.202000129.
  36. Naskar, S., Shingare, K.B., Mondal, S. and Mukhopadhyay, T. (2022), "Flexoelectricity and surface effects on coupled electromechanical responses of graphene reinforced functionally graded nanocomposites: A unified size-dependent semi-analytical framework", Mech. Syst. Signal Pr., 169, 108757. https://doi.org/10.1016/j.ymssp.2021.108757.
  37. Noori, H., Mortazavi, B., Keshtkari, L., Zhuang, X. and Rabczuk, T. (2021), "Nanopore creation in MoS2 and graphene monolayers by nanoparticles impact: A reactive molecular dynamics study", Appl. Phys. A, 127(7), 1-13. https://doi.org/10.1007/s00339-021-04693-5.
  38. O'Connor, T.C., Andzelm, J. and Robbins, M.O. (2015), "AIREBO-M: A reactive model for hydrocarbons at extreme pressures", J. Chem. Phys., 142(2), 024903 https://doi.org/10.1063/1.4905549.
  39. O'Masta, M.R., Russell, B.P. and Deshpande, V.S. (2017), "An exploration of the ballistic resistance of multilayer graphene polymer composites", Extreme Mech. Lett., 11, 49-58. https://doi.org/10.1016/j.eml.2016.12.001.
  40. Peng, Q., Peng, S. and Cao, Q. (2021), "Ultrahigh ballistic resistance of twisted bilayer graphene", Crystals, 11(2), 206. https://doi.org/10.3390/cryst11020206.
  41. Plimpton, S. (1995), "Fast parallel algorithms for short-range molecular dynamics", J. Comput. Phys., 117(1), 1-19. https://doi.org/10.1006/jcph.1995.1039.
  42. Qiu, Y., Zhang, Y., Ademiloye, A.S. and Wu, Z. (2020), "Molecular dynamics simulations of single-layer and rotated double-layer graphene sheets under a high velocity impact by fullerene", Comput. Mater. Sci., 182, 109798. https://doi.org/10.1016/j.commatsci.2020.109798.
  43. Roy, A., Gupta, K.K., Naskar, S., Mukhopadhyay, T. and Dey, S. (2021), "Compound influence of topological defects and heteroatomic inclusions on the mechanical properties of SWCNTs", Mater. Today Commun., 26, 102021. https://doi.org/10.1016/j.mtcomm.2021.102021.
  44. Sha'bani, F. and Rash-Ahmadi, S. (2021), "Molecular dynamics investigation of pull-in instability in graphene sheet under electrostatic and van der Waals forces", Adv. Nano Res., 11(2), 173-181. https://doi.org/10.12989/anr.2021.11.2.173.
  45. Shahini, E., Rangriz, F., Karimi Taheri, A. and Abdi-Jalebi, M. (2021), "Optimizing structural and mechanical properties of coiled carbon nanotubes with NSGA-II and reactive molecular dynamics simulation", J. Phys. Chem. C, 125(11), 6237-6248. https://doi.org/10.1021/acs.jpcc.1c00073.
  46. Sharma, V., Mitlin, D. and Datta, D. (2021), "Understanding the Strength of the Selenium-Graphene Interfaces for Energy Storage Systems", Langmuir, 37(6), 2029-2039. https://doi.org/10.1021/acs.langmuir.0c02893.
  47. Shingare, K.B. and Kundalwal, S.I. (2019), "Static and dynamic response of graphene nanocomposite plates with flexoelectric effect", Mech. Mater., 134, 69-84. https://doi.org/10.1016/j.mechmat.2019.04.006.
  48. Shoaib, H., Peng, Q. and Alsayoud, AQ. (2021), "Atomic insights into fracture characteristics of twisted tri-layer graphene", Crystals, 11(10),1202. https://doi.org/10.3390/cryst11101202.
  49. Song, W.L., Guan, X.T., Fan, L.Z., Zhao, Y.B., Cao, W.Q., Wang, C.Y. and Cao, M.S. (2016), "Strong and thermostable polymeric graphene/silica textile for lightweight practical microwave absorption composites", Carbon, 100, 109-117. https://doi.org/10.1016/j.carbon.2016.01.002.
  50. Stankovich, S., Dikin, D.A., Dommett, G.H., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T. and Ruoff, R.S. (2006), "Graphene-based composite materials", Nature, 442(7100), 282-286. https://doi.org/10.1038/nature04969
  51. Stukowski, A. (2009), "Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool", Model. Simul. Mater. Sc., 18(1), 015012. https://doi.org/10.1088/0965-0393/18/1/015012.
  52. Sunnardianto, G.K., Bokas, G., Hussein, A., Walters, C., Moultos, O.A. and Dey, P. (2021), "Efficient hydrogen storage in defective graphene and its mechanical stability: A combined density functional theory and molecular dynamics simulation study", Int. J. Hydrogen Energ., 46(7), 5485-5494. https://doi.org/10.1016/j.ijhydene.2020.11.068.
  53. Tersoff, J. (1988), "New empirical approach for the structure and energy of covalent systems", Phys. Rev. B, 37(12), 6991. https://doi.org/10.1103/PhysRevB.37.6991.
  54. Tian, W., Li, W., Liu, X. and Wang, Y. (2017), "Molecular dynamics study on the resonance properties of a nano resonator based on a graphene sheet with two types of vacancy defects", Appl. Sci., 7(1), 79. https://doi.org/10.3390/app7010079.
  55. Tian, H., Zhang, B. and Li, Q.M. (2019), "Ballistic response of hexagonal boron nitride monolayer under impact of a nano-projectile", Mech. Mater., 133, 1-12. https://doi.org/10.1016/j.mechmat.2019.03.003.
  56. Trinh, M.C. and Mukhopadhyay, T. (2021), "Semi-analytical atomic-level uncertainty quantification for the elastic properties of 2D materials", Mater. Today Nano, 15, 100126. https://doi.org/10.1016/j.mtnano.2021.100126.
  57. Wong, K.L., Chuan, M.W., Chong, W.K., Alias, N.E., Hamzah, A., Lim, C.S. and Tan, M.L.P. (2019), "Modeling of low-dimensional pristine and vacancy incorporated graphene nanoribbons using tight binding model and their electronic structures", Adv. Nano Res., 7(3), 209-221. https://doi.org/10.12989/anr.2019.7.3.209.
  58. Xia, K., Zhan, H., Hu, D.A. and Gu, Y. (2016), "Failure mechanism of monolayer graphene under hypervelocity impact of spherical projectile", Scientific Rep., 6(1), 1-10. https://doi.org/10.1038/srep33139.
  59. Yang, X. and Zhang, B. (2021), "Twisted bilayer graphene/h-BN under impact of a nano-projectile", Appl. Surf. Sci., 538, 148030. https://doi.org/10.1016/j.apsusc.2020.148030.
  60. Yin, H., Sun, Z., Wang, Z., Tang, D., Pang, C.H., Yu, X., Barnard, A.S., Zhao, H. and Yin, Z. (2021), "The data-intensive scientific revolution occurring where two-dimensional materials meet machine learning", Cell Rep. Phys. Sci., 100482. https://doi.org/10.1016/j.xcrp.2021.100482.
  61. Yoon, K., Ostadhossein, A. and Van Duin, A.C. (2016), "Atomistic-scale simulations of the chemomechanicalbehavior of graphene under nanoprojectile impact", Carbon, 99, 58-64. https://doi.org/10.1016/j.carbon.2015.11.052.
  62. Zhang, X., Chen, Z., Chen, H. and Xu, L. (2021), "Comparative studies of thermal conductivity for bilayer graphene with different potential functions in molecular dynamic simulations", Results Phys., 22, 103894. https://doi.org/10.1016/j.rinp.2021.103894.
  63. Zheng, S., Cao, Q., Liu, S. and Peng, Q. (2019), "Atomic structure and mechanical properties of twisted bilayer graphene", J. Compos. Sci., 3(1), 2. https://doi.org/10.3390/jcs3010002.
  64. Goswami, A.D., Mishra, M.K., Patra, D. (2016), "Adapting pattern recognition approach for uncertainty assessment in the geologic resource estimation for Indian iron ore mines", Proceedings of the 2016 International Conference on Signal Processing, Communication, Power and Embedded System, Paralakhemundi, India, June.
  65. Quinonero-Candela, J., Rasmussen, C.E. (2005), "A unifying view of sparse approximate Gaussian process regression", J. Mach. Learn. Res., 6, 1939-59.