DOI QR코드

DOI QR Code

A study on the Measurement of Residual Flux for Transformer

변압기 잔류자속 측정에 관한 연구

  • Kim, Young-Hak (Division of Electrical engineering, Pukyong University)
  • 김영학 (부경대학교 전기공학부)
  • Received : 2022.04.11
  • Accepted : 2022.05.20
  • Published : 2022.05.28

Abstract

In previous studies to obtain the residual magnetic flux of the transformer using the leakage magnetic flux, a transfer function was used. The transfer function was consisted with the leakage magnetic flux measured outside the transformer and the residual magnetic flux measured at the moment passing through the two ± residual points. In this study, a method of calculating the ratio of the maximum operating leakage flux to the residual leakage flux was proposed The advantage of this method is to avoid the uncertainty of the transfer function due to current noise. Then, the noise of the sensor was measured to investigate the effect of the drift of the noise on the measurement results. Comparing the residual leakage magnetic flux density with 80nT of the drift noise, 66 times or more at a distance of 10 mm and 5 times or more at a distance of 100 mm were obtained. 100mm was the maximum measurement distance to obtain the residual magnetic flux.

누설자속으로 변압기의 잔류자속을 구하는 기존의 연구에서는 전달함수를 이용하였다. 전달함수는 변압기의 ±의 두 잔류 점을 지나는 순간에 측정한 잔류자속과 동일한 순간에 변압기 밖에서 구한 누설자속으로 구하였다. 본 연구에서는 전달함수를 구하지 않고 동작 최대의 누설자속과 잔류자속에 의한 누설자속의 비를 계산하여 잔류자속을 구하는 방법이 가능함을 확인하였다. 이 방법의 장점은 전류잡음으로 인한 전달함수의 불확정성을 피하는 것이다. 그리고 센서의 잡음을 측정하여 잡음의 드리프트가 측정결과에 미치는 영향을 조사하였다. 잔류 누설 자속밀도를 센서의 드리프트인 80nT와 비교하면 거리 10mm에서는 약 66배, 100mm에서는 5배 이상이었다. 측정거리 100mm는 본 연구에서 얻어진 잔류자속을 구하기 위한 최대 측정 거리였다.

Keywords

Acknowledgement

This work was supported by a Reseatch Grant of Pukyong National University(2021)

References

  1. J. H. Brunke, & K. J. Frohlich. (2001). Elimination of Transformer Inrush Currents by Controlled Switching -Part I: Theoretical Consideration. ber, IEEE,"s", IEEE Transaction on Power Delivery, 16(2), 276-280. DOI : 10.1109/61.915495
  2. Y. Cui, S. G. Abdulsalam, S. Chen & W. Xu. (2005). A Sequential Phase Energization Technique for Transformer Inrush Current Reduction-;Part I: Simulation and Experimental Results. IEEE Transaction on Power Delivery, 20(2), 943-949. DOI : 10.1109/TPWRD.2004.843467
  3. W. Xu, S. G. Abdulsalam, Y. Cui & X. Liu. (2005). A Sequential Phase Energization Technique for Transformer Inrush Current Reduction-;Part 2: Simulation and Experimental Results. IEEE Transaction on Power Delivery, 20(2), 950-956. DOI : 10.1109/TPWRD.2004.843465
  4. Y. Nakachi, R. Hatano, T. Matsubara & Y. Uemura. (2006). Calculation of Transformer Saturated Leakage Inductance based on Field Test Data. 2006 IEEE Power Engineering Society General Meeting, 1-7. DOI : 10.1109/PES.2006.1708984
  5. Y. Corrodi, K. Kamei, H. Koyama, H. Ito & T. Goda. (2011). Influence of System Transients on the Residual Flux of an Unloaded Transformer. IEEE Power Energy Society. General Meeting, 1-7. DOI : 10.1109/PES.2011.6039530
  6. R. Yacamini & A. Abu-Nasser. (1998). Numerical Calculation of Inrush Current in Single Phase Transformers. IEE Proc. B, Electr. Power Appl., 128(6). 327-334. DOI : 10.1109/TPWRD.2015.2443560
  7. D. Cavallera, V. Oiring, J. Coulomb, O. Chadebec, B. Caillault & F. Zgainski. (2014). A New Method to Evaluate Residual Flux Thanks to Leakage Flux, Application to a Transformer. IEEE Transaction on Magnetics, 50(2). 7024904. DOI : 10.1109/TMAG.2013.2282175
  8. Z. Q. Lei, G. J. Li, W. F. Egelhoff, P. T. Lai & P.P. T. Pong. (2011). Review Noise Source in Magnetic Tunnel Junction Sensor. IEEE Transaction on Magnetcs 47(3), 602-612. DOI : 10.1109/TMAG.2010.2100814
  9. M. Janosek, M. Butta, M. Dressler, E. Saunderson, D. Novotny & C. Fourie. (2020). 1-PT Noise Fluxgate Magnetometer for Geomagnetic Measurements and Unshielded Magnetocardiography. IEEE Transaction on Magnetcs. 69(5), 2552-2560. DOI : 10.1109/TIM.2019.2949205
  10. Y. Watanabe, M. Otsubo, A. Takahashi, T. Yanai, M. Nakano.& H. Hukunaga. (2015). Temperature Characteristics of a Fluxgate Current Sensor with Fe-Ni-Co Ring Core. IEEE Transaction on Magnetcs. 51(11), 4004104. DOI : 10.1109/TIM.2015.2438541