DOI QR코드

DOI QR Code

Application of Nanoindentation Technique for Characterizing Surface Properties of Carburized Materials

침탄 처리 소재의 표면 분석을 위한 나노압입시험법의 응용

  • Choi, In-Chul (School of Materials Science and Engineering, Kumoh National Institute of Technology) ;
  • Oh, Myung-Hoon (School of Materials Science and Engineering, Kumoh National Institute of Technology)
  • 최인철 (금오공과대학교 신소재공학부) ;
  • 오명훈 (금오공과대학교 신소재공학부)
  • Received : 2022.05.09
  • Accepted : 2022.05.25
  • Published : 2022.05.30

Abstract

In the automobile and shipbuilding industries, various materials and components require superior surface strength, excellent wear resistance and good resistance to repeated loads. To improve the surface properties of the materials, various surface heat treatment methods are used, which include carburizing, nitriding, and so on. Among them, carburizing treatment is widely used for structural steels containing carbon. The effective carburizing thickness required for materials depends on the service environment and the size of the components. In general, however, there is a limit in evaluation of the surface properties with a standardized mechanical test method because the thickness or cross-sectional area of the carburized layer is limited. In this regard, the nanoindentation technique has lots of advantages, which can measure the mechanical properties of the material surface at the nano and micro scale. It is possible to understand the relationship between the microstructural change in the hardened layer by carburizing treatment and the mechanical properties. To be spread to practical applications at the industrial level, in this paper, the principle of the nanoindentation method is described with a representative application for analyzing the mechanical properties of the carburized material.

Keywords

Acknowledgement

본 연구는 금오공과대학교 교수연구년제에 의하여 연구된 실적물임.

References

  1. 이수진 : 열처리기술시리즈 11 - 침탄열처리, 원창출판사, 1991.
  2. H. M. Choi, Y. H. Park, Y. T. Shin, and M. H. Kim : J. Weld. Join. 32(4) (2014) 34.
  3. I. -C. Choi : J. of the Korean Soc. For Heat Treatment 33(2) (2020) 72.
  4. S. -H. Shim and J.-i. Jang : J. of the KSME 49(5) (2009) 45.
  5. J. Boussinesq : Applications des Potentiels a l'etude de equilibre et du movement des solides elastiques, Gauthier-Villars, 1885.
  6. H. Hertz : J. reine und angewandte Mathematik 92 (1882) 156. https://doi.org/10.1515/crll.1882.92.156
  7. K. L. Johnson : Contact Mechanics, University Press, Cambridge, 1985.
  8. I. N. Sneddon : Int. J. Engng. Sci. 3(1) (1965) 47. https://doi.org/10.1016/0020-7225(65)90019-4
  9. J. W. Harding and I. N. Sneddon : Proc. Cambridge Philos. Soc. 41 (1945) 12. https://doi.org/10.1017/S0305004100022313
  10. M. F. Doerner and W. D. Nix : J. Mater. Res. 1 (1986) 601. https://doi.org/10.1557/JMR.1986.0601
  11. W. C. Oliver and G. M. Pharr : J. Mater. Res. 7 (1992) 1564. https://doi.org/10.1557/JMR.1992.1564
  12. W. C. Oliver and G. M. Pharr : J. Mater. Res. 19 (2002) 3. https://doi.org/10.1557/jmr.2004.0002
  13. H. Lee and J. H. Lee : Trans. Korean Soc. Mech. Eng. A 32(10) (2008) 805. https://doi.org/10.3795/KSME-A.2008.32.10.805
  14. W. D. Nix and H. Gao : J. Mech. Phys. Sol. 46 (1998) 411. https://doi.org/10.1016/S0022-5096(97)00086-0
  15. I. -C. Choi, Y. -J. Kim, Y. M. Wang, U. Ramamurty, and J. -i. Jang : Acta Mater. 61 (2013) 7313. https://doi.org/10.1016/j.actamat.2013.08.037
  16. U. Ramamurty and J. -i. Jang : Cryst. Eng. Comm. 16 (2014) 12. https://doi.org/10.1039/C3CE41266K
  17. W. Chen, X. He, W. Yu, J. Shi, M. Wang, and K. Yao : Micron 144 (2021) 103028. M.A. Zaccone, J.B. Kelley, B. Kraus. https://doi.org/10.1016/j.micron.2021.103028
  18. W. Chen, X. F. He, W. C. Yu, J. Shi, M. Q. Wang, and K. F. Yao : J. Mater. Eng. Perf. 29 (2020) 4626. https://doi.org/10.1007/s11665-020-04992-7
  19. B. Wang, Y. He, Y. Liu,Y. Tian, J. You, Z. Wang, and G. Wang : Materials 13 (2020) 2352. https://doi.org/10.3390/ma13102352
  20. F. Pohl : Mater. Charact. 167 (2020) 110446. https://doi.org/10.1016/j.matchar.2020.110446
  21. Y. Jiang, Q. Wu, Y. Li, Y. Peng, and J. Gong : Surf. Coat. Tech. 387 (2020) 125501. https://doi.org/10.1016/j.surfcoat.2020.125501
  22. Z. Liu, S. Wang, S. Zhang, Y. Feng, Y. Peng, and J. Gong : Mater. Today Comm. 28 (2021) 102714. https://doi.org/10.1016/j.mtcomm.2021.102714
  23. E. Meyer : Z. Ver, Dtsch. Ing. 52 (1908) 645.
  24. R. Hill, E. H. Lee, and S. J. Tupper : P. Roy. Soc. A-Math. Phys. 188 (1947) 273.
  25. D. Tabor : The Hardness of Metals, Oxford University Press, 1951.
  26. G. Y. Zhou, J. Guo, J. Y. Zhao, Q. Tang, and Z. N. Hu : Metals 10 (2020) 125. https://doi.org/10.3390/met10010125
  27. H. A. Francis : Trans. of the ASME, (1976) 272.
  28. R. Hill, B. Storakers, and A. B. Zdunek : Proc. R. Soc. Lond. A 423 (1989) 301. https://doi.org/10.1098/rspa.1989.0056
  29. M. Dao, N. V. Chollacoop, K. J. Van Vliet, T. A. Venkatesh, and S. Suresh : Acta Mater. 49(19) (2001) 3899. https://doi.org/10.1016/S1359-6454(01)00295-6
  30. A. C. Fischer-Cripps : Nanoindentation, 3rd ed., Springer, New York, 2011.
  31. G. T. Xu, B. Sun, Y. K. Qiao, G. Wang, and M. H. Zhao : J. Mater. Res. Tech. 12 (2021) 2307. https://doi.org/10.1016/j.jmrt.2021.04.028
  32. Z. Sun, S. Wang, and D. Hou : Rev. Compos. Mater. Av. 31(3) 2021 131.
  33. H. Elghazal, G. Lormand, A. Hamel, D. Girodin, and A. Vincent : Mater. Sci. Eng. A 303 (2001) 110. https://doi.org/10.1016/S0921-5093(00)01852-9
  34. I. -C. Choi and J. -i. Jang : Adv. Eng. Mater. 22 (2020) 1900648. https://doi.org/10.1002/adem.201900648
  35. I. -C. Choi, B. -G. Yoo, Y. -J. Kim, and J. -i. Jang : J. Mater. Res. 27 (2012) 3. https://doi.org/10.1557/jmr.2011.213