DOI QR코드

DOI QR Code

Wave propagation investigation of a porous sandwich FG plate under hygrothermal environments via a new first-order shear deformation theory

  • Al-Osta, Mohammed A. (Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals)
  • Received : 2022.01.15
  • Accepted : 2022.04.06
  • Published : 2022.04.10

Abstract

This study investigates the wave propagation in porous functionally graded (FG) sandwich plates subjected to hygrothermal environments. A new simple three-unknown first-ordershear deformation theory (FSDT) incorporating an integral term is utilized in this paper. Only three unknowns are used to formulate the governing differential equation by applying the Hamilton principle. The FG layer of the sandwich plate is modeled using the power-law function with evenly distributed porosities to represent the defects of the manufacturing process. The plate is subjected to nonlinear hygrothermal changes across the thickness. The effects of the power-law exponent, core to thickness ratios, porosity volume, and the relations between volume fraction and wave properties of porous FG plate under the hygrothermal environment are investigated. The results showed that the waves' phase velocities increase linearly with the waves number in the FGM plate. The porosity of the FG materials plate has a noticeable impact on the phase velocity when considering the high ratios of the core layer. It has a negligible effect on small core layers. Finally, it is observed that changing temperatures and moistures do not influence the relationship between the power law and the phase velocity.

Keywords

Acknowledgement

The authors would like to acknowledge the support provided by King Fahd University of Petroleum & Minerals (KFUPM), Saudi Arabia.

References

  1. Ahmed, B., Boukhelf, F., Benbakhti, A.D., Bachir, B.M., Tounsi, A. and Elabbes, A.B. (2016), "The thermal study of wave propagation in Functionally Graded Material Plates (FGM) based on neutral surface position", Mathem. Modelling Eng. Prob., 3(4), 202-205. https://doi.org/10.18280/mmep.030410.
  2. Akbas, S.D. (2016), "Wave propagation in edge cracked functionally graded beams under impact force", J. Vib. Control, 22(10), 2443-2457. https://doi.org/10.1177/1077546314547531.
  3. Aksoy, H.G. and Senocak E. (2009), "Wave propagation in functionally graded and layered materials", Finite Elements Anal. Des., 45(12), 876-891. https://doi:10.1016/j.finel.2009.06.025.
  4. Al-Furjan, M.S.H., Habibi, M., Ghabussi, A., Safarpour, H., Safarpour, M. and Tounsi, A. (2021a), "Non-polynomial framework for stress and strain response of the FG-GPLRC Disk using three-dimensional refined higher-order theory", Eng. Struct., 228, 111496. https://doi.org/10.1016/j.engstruct.2020.111496.
  5. Al-Furjan, M.S.H., Habibi, M., Ni, J. and Tounsi, A. (2020a), "Frequency simulation of viscoelastic multi-phase reinforced fully symmetric systems", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-020-01200-x.
  6. Al-Furjan, M.S.H., Habibi, M., Sadeghi, S., Safarpour, H., Tounsi, A. and Chen, G. (2020b), "A computational framework for propagated waves in a sandwich doubly curved nanocomposite panel", Eng. Comput., 1-18. https://doi.org/10.1007/s00366-020-01130-8.
  7. Al-Furjan, M.S.H., Habibi, M., Shan, L. and Tounsi, A. (2021b), "On the vibrations of the imperfect sandwich higher-order disk with a lactic core using generalize differential quadrature method", Compos. Struct., 257, 113150. https://doi.org/10.1016/j.compstruct.2020.113150.
  8. Asrari, R., Ebrahimi, F. and Kheirikhah, M. M. (2020) , "On post-buckling characteristics of functionally graded smart magneto-electro-elastic nanoscale shells", Adv. Nano Res., 9(1), 33-45. https://doi.org/10.12989/anr.2020.9.1.033.
  9. Attia, A., Berrabah, A.T., Bousahla, A.A., Bourada, F., Tounsi, A. and Mahmoud, S.R. (2021), "Free vibration analysis of FG plates under thermal environment via a simple 4-unknown HSDT", Steel Compos. Struct., 41(6), 899-910. https://doi.org/10.12989/scs.2021.41.6.899.
  10. Ayache, B., Bennai, R., Fahsi B., Fourn, H., Atmane, H.A. and Tounsi A. (2018), "Analysis of wave propagation and free vibration of functionally graded porous material beam with a novel four variable refined theory", Earthq. Struct., 15(4), 369-82. https://doi.org/10.12989/eas.2018.15.4.369.
  11. Babaei, M. and Kamran, A. (2020), "Static, dynamic and natural frequency analyses of functionally graded carbon nanotube annular sector plates resting on viscoelastic foundation." SN Appl. Sci., 2(10), 1-21. https://doi.org/10.1007/s42452-020-03421-7.
  12. Benadouda, M., Ait, H.A., Tounsi, A., Bernard, F. and Mahmoud, S.R. (2017), "An efficient shear deformation theory for wave propagation in functionally graded material beams with porosities", Earthq. Struct., 13(3), 255-265. https://doi.org/10.12989/eas.2017.13.3.255.
  13. Bendenia, N., Zidour, M., Bousahla, A.A., Bourada, F., Tounsi A., Benrahou K.H., Bedia, E.A., Mahmoud, S.R. and Tounsi, A. (2020), "Deflections, stresses and free vibration studies of FG-CNT reinforced sandwich plates resting on pasternak elastic foundation", Comput. Concrete, 26(3), 213-226. https://doi.org/10.12989/cac.2020.26.3.213.
  14. Bin, W., Jiangong, Y. and Cunfu, H. (2008), "Wave propagation in non-homogeneous magneto-electro-elastic plates", J. Sound Vib., 317(1-2), 250-264. https://doi.org/10.1016/j.jsv.2008.03.008.
  15. Cao, Y., Qian, X., Fan, Q. and Ebrahimi, F. (2020), "Mechanical analysis of functionally graded spherical panel resting on elastic foundation under external pressure", Struct. Eng. Mech., 74(2), 297-311. https://doi.org/10.12989/sem.2020.74.2.297.
  16. Chakraborty, A. and Gopalakrishnan, S. (2003), "A spectrally formulated finite element for wave propagation analysis in functionally graded beams", Int. J. Solids Struct., 40(10), 2421-2448. https://doi.org/10.1016/S0020-7683(03)00029-5.
  17. Chakraborty, A. and Gopalakrishnan, S. (2004), "Wave propagation in inhomogeneous layered media : solution of forward and inverse problems", Acta Mechanica, 185, 153-185. https://doi.org/10.1007/s00707-004-0080-7.
  18. Chakraborty, A. and Gopalakrishnan, S. (2003), "A spectrally formulated finite element for wave propagation analysis in functionally graded beams", Int. J. Solid Struct., 40(10), 2421-2448. https://doi.org/10.1016/S0020-7683(03)00029-5.
  19. Chakraborty, A. and Gopalakrishnan, S. (2004), "Wave propagation in inhomogeneous layered media: solution of forward and inverse problems", Acta Mechanica,169, 153-185. https://doi.org/10.1007/s00707-004-0080-7
  20. Chaudhary, S.K., Kar, V.R. and Shukla, K.K. (2021), "Flexural behavior of perforated functionally graded composite panels under complex loading conditions: Higher-order finite-element approach," J. Aeros. Eng., 34(6), 4021081. https://doi.org/10.1061/(ASCE)AS.1943-5525.0001334.
  21. Cheshmeh, E., Karbon, M. and Eyvazian, A. (2020), "Buckling and vibration analysis of FG-CNTRC plate subjected to thermo-mechanical load based on higher order shear deformation theory", Mech. Based Des. Struct. Machines, 1-24. https://doi.org/10.1080/15397734.2020.1744005.
  22. Chikh, A. (2019), "Free vibration analysis of simply supported P-FGM nanoplate using a nonlocal four variables shear deformation plate theory", Mech. Eng, 69(4), 9-24. https://doi:10.2478/scjme-2019-0039, Print ISSN 0039-2472.
  23. Chikh, A. (2019a), "Analysis of static behavior of a P-FGM Beam", J. Mater. Eng. Struct. «JMES», 6(4), 513-524.
  24. Chikh, A. (2019b), "Dynamic behavior analysis of FGM clamped nano-plates based on elastic foundations", In International Symposium on Materials and Sustainable Development, 100-111. Springer. https://doi.org/10.1007/978-3-030-43268-3_9.
  25. Chikh, A., Tounsi, A. and Adda Bedia, E.A. (2017), "Thermal stability of FGM rectangular plates using a new hyperbolic shear deformation theory", J. Mater. Processes Environ., 5(1), 34-45.
  26. Dehshahri, K., Nejad, M.Z., Ziaee, S., Niknejad, A. and Hadi, A. (2020), "Free vibrations analysis of arbitrary three-dimensionally FGM nanoplates", Adv. Nano Res., 8(2), 115-134. https://doi.org/10.12989/anr.2020.8.2.115.
  27. Dineva, P.S., Rangelov, T. and Manolis, G.D. (2007), "Elastic wave propagation in a class of cracked , functionally graded materials by BIEM", Comput. Mech., 39(3), 293-308. https://doi.org/10.1007/s00466-005-0027-4.
  28. Dorduncu, M., Kaya K. and Faruk, E.O. (2020), "Peridynamic analysis of laminated composite plates based on first-order shear deformation theory", Int. J. Appl. Mech., 12 (3), 2050031. https://doi.org/10.1142/S1758825120500313.
  29. Ebrahimi, F. and Reza B.M. (2017), "Flexural wave propagation analysis of embedded S-FGM nanobeams under longitudinal magnetic field based on nonlocal strain gradient theory", Arab. J. Sci. Eng., 42, 1715-1726. https://doi.org/10.1007/s13369-016-2266-4.
  30. Esmaeilzadeh, M., Golmakani, M.E., Luo, Y. and Bodaghi, M. (2021), "Transient behavior of imperfect bi-directional functionally graded sandwich plates under moving loads", Eng. Comput., 1-11. https://doi.org/10.1007/s00366-021-01521-5.
  31. Fourn, H., Ait A.H., Mohamed Bourada, Anis B.A., Tounsi, A. and Mahmoud R.S. (2018), "A novel four variable refined plate theory for wave propagation in functionally graded material plates", Steel Compos. Struct., 27(1), 109-122. https://doi.org/10.12989/scs.2018.27.1.109.
  32. Gao, W., Qin, Z. and Chu, F. (2020), "Wave propagation in functionally graded porous plates reinforced with graphene platelets", Aeros. Sci. Technol., 102, 105860. https://doi.org/10.1016/j.ast.2020.105860.
  33. Ghatage, P. S., Kar, V. R., and Sudhagar, P. E. (2020), "On the numerical modelling and analysis of multi-directional functionally graded composite structures: A review", Composite Structures, 236, 111837. https://doi.org/10.1016/j.compstruct.2019.111837.
  34. Hebali, H., Chikh, A., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Hussain, M. and Tounsi, A. (2022), "Effect of the variable visco-Pasternak foundations on the bending and dynamic behaviors of FG plates using integral HSDT model", Geomech. Eng., 28(1), 49-64. https://doi.org/10.12989/gae.2022.28.1.049.
  35. Heidari, F., Afsari, A. and Janghorban, M. (2020), "Several models for bending and buckling behaviors of FG-CNTRCs with piezoelectric layers including size effects", Adv. Nano Res., 9(3), 193-210. https://doi.org/10.12989/anr.2020.9.3.193.
  36. Huan, Q., Nguyen, L.B., Nguyen, H.B. and Nguyen-xuan, H. (2020), "A three-variable high order shear deformation theory for isogeometric free vibration , buckling and instability analysis of FG porous plates reinforced by graphene platelets", Compos. Struct., 245, 112321. https://doi.org/10.1016/j.compstruct.2020.112321.
  37. Huang, X., Hao, H., Oslub, K., Habibi, M. and Tounsi, A. (2021), "Dynamic stability/instability simulation of the rotary size-dependent functionally graded microsystem", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-021-01399-3.
  38. Huang, Y., Karami, B., Shahsavari, D. and Tounsi, A. (2021), "Static stability analysis of carbon nanotube reinforced polymeric composite doubly curved micro-shell panels", Archiv. Civil Mech. Eng., 21(4), 1-15. https://doi.org/10.1007/s43452-021-00291-7.
  39. Kar, V.R. and Panda, S.K. (2016b), "Post-buckling behaviour of shear deformable functionally graded curved shell panel under edge compression", Int. J. Mech. Sci., 115-116, 318-324. https://doi.org/10.1016/j.ijmecsci.2016.07.014.
  40. Kar, V.R. and Panda, S.K. (2015), "Nonlinear flexural vibration of shear deformable functionally graded spherical shell panel", Steel Compos. Struct., 18(3), 693-709. https://doi.org/10.12989/scs.2015.18.3.693.
  41. Kar, V.R. and Panda, S.K. (2016a), "Nonlinear thermomechanical behavior of functionally graded material cylindrical/hyperbolic/elliptical shell panel with temperature-dependent and temperature-independent properties", J. Pressure Vessel Technol., 138(6), 1-13. https://doi.org/10.1115/1.4033701.
  42. Kar, V.R. and Panda, S.K. (2017), "Postbuckling analysis of shear deformable FG shallow spherical shell panel under nonuniform thermal environment", J. Thermal Stresses, 40(1), 25-39. https://doi.org/10.1080/01495739.2016.1207118.
  43. Kar, V.R., Mahapatra, T.R. and Panda, S.K. (2017), "Effect of different temperature load on thermal postbuckling behaviour of functionally graded shallow curved shell panels", Compos. Struct., 160, 1236-1247. https://doi.org/10.1016/j.compstruct.2016.10.125.
  44. Karakoti, A. and Kar, V.R. (2019), "Deformation characteristics of sinusoidally-corrugated laminated composite panel-A higher-order finite element approach", Compos. Struct., 216, 151-158. https://doi.org/10.1016/j.compstruct.2019.02.097.
  45. Karami, B., Janghorban, M. and Tounsi, A. (2019), "Wave propagation of functionally graded anisotropic nanoplates resting on winkler-pasternak foundation", Struct. Eng. Mech., 70(1), 55-66. https://doi.org/10.12989/sem.2019.70.1.055.
  46. Karami, B., Shahsavari, D., Janghorban, M. and Li, L. (2020), "Free vibration analysis of FG nanoplate with poriferous imperfection in hygrothermal environment", Struct. Eng. Mech. 73(2), 191-207. https://doi.org/10.12989/sem.2020.73.2.191.
  47. Khayat, M., Rahnema, H., Baghlani, A. and Dehghan, S. (2019), "A theoretical study of wave propagation of eccentrically stiffened FGM plate on pasternak foundations based on higher-order shear deformation plate theory", Mater. Today Commun., 20, 100595. https://doi.org/10.1016/j.mtcomm.2019.100595.
  48. Koizumi, M. (1997), "FGM activities in japan", Composites part B, 28(1-2), 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9.
  49. Kumar, Y., Gupta, A. and Tounsi, A. (2021), "Size-dependent vibration response of porous graded nanostructure with FEM and nonlocal continuum model", Adv. Nano Res., 11(1), 1-17. https://doi.org/10.12989/anr.2021.11.1.001.
  50. Liang, C. and Qing, Y. (2020), "A quasi-3D trigonometric shear deformation theory for wave propagation analysis of FGM sandwich plates with porosities resting on viscoelastic foundation", Compos. Struc., 247, 112478. https://doi.org/10.1016/j.compstruct.2020.112478.
  51. Madenci, E. (2021), "Free vibration and static analyses of metalceramic FG beams via high-order variational MFEM", Steel Compos. Struct., 39(5), 493-509. https://doi.org/10.12989/scs.2021.39.5.493.
  52. Madenci, E. and Ozkilic, Y. O. (2021), "Free vibration analysis of open-cell FG porous beams: analytical, numerical and ANN approaches", Steel Compos. Struct., 40(2), 157-173. https://doi.org/10.12989/scs.2021.40.2.157.
  53. Merdaci, S. and Mostefa A. (2020), "Influence of porosity on the analysis of sandwich plates FGM using of high order shear-deformation theory", Frattura Ed Integrita Strutturale, 14(51), 199-214. https://doi.org/10.3221/IGF-ESIS.51.16.
  54. Mohammad, S., Hosseini H., Kharaghani, A., Kirsch C. and Gabbert, U. (2013), "Numerical simulation of lamb wave propagation in metallic foam sandwich structures : a parametric study", Compos. Struct., 97, 387-400. https://doi.org/10.1016/j.compstruct.2012.10.039.
  55. Mudhaffar, I., Tounsi A., Chikh, A. Al-Osta M., Al-zahrani M. and Al-dulaijan S. (2021), "Hygro-thermo-mechanical bending behavior of advanced functionally graded ceramic metal plate resting on a viscoelastic foundation", Structures, 33, 2177-2189. https://doi.org/10.1016/j.istruc.2021.05.090.
  56. Narendar, S., Mahapatra, D.R. and Gopalakrishnan, S. (2010), "Investigation of the effect of nonlocal scale on ultrasonic wave dispersion characteristics of a monolayer graphene", Comput. Mater. Sci., 49(4), 734-742. https://doi.org/10.1016/j.commatsci.2010.06.016.
  57. Pham, Q.H., Pham, T.D., Trinh, Q.V. and Phan, D.H. (2020), "Geometrically nonlinear analysis of functionally graded shells using an edge-based smoothed MITC3 (ES-MITC3) finite elements", Eng. Comput., 36(3), 1069-1082. https://doi.org/10.1007/s00366-019-00750-z.
  58. Rachid, A., Ouinas, D., Lousdad, A., Zaoui, F.Z., Achour, B., Gasmi, H., Butt, T.A. and Tounsi, A. (2022), "Mechanical behavior and free vibration analysis of FG doubly curved shells on elastic foundation via a new modified displacements field model of 2D and quasi-3D HSDTs", Thin-Walled Struct., 172, 108783. https://doi.org/10.1016/j.tws.2021.108783.
  59. Rajaneesh, A., Patel, H. and Shimpi, R. (2021), "Finite element bending and free vibration analysis of layered plates using new first order shear deformation theory", Compos. Struct., 257, 113143. https://doi.org/10.1016/j.compstruct.2020.113143.
  60. Shamshirsaz, M., Sharafi, S., Rahmatian, J., Rahmatian, S. and Sepehry, N. (2020), "A semi-analytical mesh-free method for 3D free vibration analysis of bi-directional FGP circular structures subjected to temperature variation", Struct. Eng. Mech., 73(4), 407-426. https://doi.org/10.12989/sem.2020.73.4.407.
  61. Shariati, A., Ebrahimi, F., Karimiasl, M., Vinyas, M. and Toghroli, A. (2020), "On transient hygrothermal vibration of embedded viscoelastic flexoelectric/piezoelectric nanobeams under magnetic loading", Adv. Nano Res., 8(1), 49-58. https://doi.org/10.12989/anr.2020.8.1.049.
  62. She, G.L., Ren, Y.R. and Yuan, F.G. (2019), "Hygro-thermal wave propagation in functionally graded double-layered nanotubes systems", Steel Compos. Struct., 31(6), .641-653. https://doi.org/10.12989/scs.2019.31.6.641.
  63. She, G.L. (2020), "Wave propagation of FG polymer composite nanoplates reinforced with GNPs", Steel Compos. Struct, 37(1), 27-35. https://doi.org/10.12989/scs.2020.37.1.027.
  64. Sobhy, M. (2016), "An accurate shear deformation theory for vibration and buckling of FGM sandwich plates in hygrothermal environment", Int. J. Mech. Sci., 110, 62-77. https://doi.org/10.1016/j.ijmecsci.2016.03.003.
  65. Sun, D. and Luo, S.N. (2011a), "The wave propagation and dynamic response of rectangular functionally graded material plates with completed clamped supports under impulse load", Europp J. Mech. A Solids, 30(3), 396-408. https://doi.org/10.1016/j.euromechsol.2011.01.001.
  66. Sun, D. and Luo, S.N. (2011b), "Wave propagation and transient response of a FGM plate under a point impact load based on higher-order shear deformation theory", Compos. Struct., 93(5), 1474-1484. https://doi.org/10.1016/j.compstruct.2010.12.002.
  67. Tahir, S., Chikh, A., Tounsi, A., Al-Osta, M., Al-Dulaijan, S. and Al-Zahrani, M. (2021a), "Wave propagation analysis of a ceramic-metal functionally graded sandwich plate with different porosity distributions in a hygro-thermal environment", Compos. Struct., 269, 114030. https://doi.org/10.1016/j.compstruct.2021.114030.
  68. Tahir, S., Tounsi, A., Chikh, A., Al-Osta, M., Al-Dulaijan, S. and Al-Zahrani, M. (2021b), "An integral four-variable hyperbolic HSDT for the wave propagation investigation of a ceramic-metal FGM plate with various porosity distributions resting on a viscoelastic foundation", Waves Random Complex Media, 1-24. https://doi.org/10.1080/17455030.2021.1942310.
  69. Vinh, P.V. and Tounsi, A. (2021), "The role of spatial variation of the nonlocal parameter on the free vibration of functionally graded sandwich nanoplates", Eng. Comput., 0123456789. https://doi.org/10.1007/s00366-021-01475-8.
  70. Xu, X., Zhang C., Musharavati F., Sebaey, T.A. and Khan, A. (2021), "Wave propagation analysis of porous functionally graded curved beams in the thermal environment", Struct. Eng. Mech., 79(6), 665-675. https://doi.org/10.12989/sem.2021.79.6.665.
  71. Yahia, S.A., Ait, H., Houari, M. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., 53(6), 1143-1165. https://doi.org/10.12989/sem.2015.53.6.1143.
  72. Yang, Y. and Liu, Y. (2020), "A New boundary element method for modeling wave propagation in functionally graded materials", Europ. J. Mech. A Solids, 80, 103897. https://doi.org/10.1016/j.euromechsol.2019.103897.
  73. Zerrouki, R., Karas, A., Zidour, M., Bousahla, A., Tounsi, A., Bourada, F., Tounsi, A., Benrahou, K. and Mahmoud, S. (2021), "Effect of nonlinear FG-CNT distribution on mechanical properties of functionally graded nanocomposite beam", Struct. Eng. Mech., 78(2), 117-124. https://doi.org/10.12989/sem.2021.78.2.117.