Acknowledgement
This research was supported by the Supported by the National Key R&D Program of China (Grant No. 2019YFC0605304).
References
- Abd-Elazim, S. and Ali, E. (2016), "Imperialist competitive algorithm for optimal STATCOM design in a multimachine power system", Int. J. Electric. Power Energy Syst., 76, 136-146. https://doi.org/10.1016/j.ijepes.2015.09.004.
- Abdeljaber, O., Avci, O., Kiranyaz, S., Gabbouj, M. and Inman, D. J. (2017), "Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks", J. Sound Vib., 388, 154-170. https://doi.org/10.1016/j.jsv.2016.10.043.
- Abdelkarim, O.I., Ahmed, E.A., Mohamed, H.M. and Benmokrane, B. (2019), "Flexural strength and serviceability evaluation of concrete beams reinforced with deformed GFRP bars", Eng. Struct., 186, 282-296. https://doi.org/10.1016/j.engstruct.2019.02.024.
- Ahmed, S.U. (2007), Study on Deflections of Reinforced Concrete Flat Plates under Service Load.
- Ai, L., Soltangharaei, V., Bayat, M., Van Tooren, M. and Ziehl, P. (2021), "Detection of impact on aircraft composite structure using machine learning techniques", Measure. Sci. Technol., 32(8), 084013. https://doi.org/10.1088/1361-6501/abe790
- Al-Kamyani, Z., Guadagnini, M. and Pilakoutas, K. (2019), "Impact of shrinkage on crack width and deflections of reinforced concrete beams with and without steel fibres", Eng. Struct., 181, 387-396. https://doi.org/10.1016/j.engstruct.2018.12.031.
- Alkayem, N.F., Cao, M., Zhang, Y., Bayat, M. and Su, Z. (2018), "Structural damage detection using finite element model updating with evolutionary algorithms: a survey", Neural Comput. Appl., 30(2), 389-411. https://doi.org/10.1007/s00521-017-3284-1
- Asteris, P. and Cotsovos, D. (2012), "Numerical investigation of the effect of infill walls on the structural response of RC frames", Open Constr Build Technol J, 6(1), 164-181. https://doi.org/10.1007/s00521-017-3284-1.
- Asteris, P., Kolovos, K., Douvika, M. and Roinos, K. (2016), "Prediction of self-compacting concrete strength using artificial neural networks", Europ. J. Environ. Civil Eng., 20(sup1), s102-s122. https://doi.org/10.1080/19648189.2016.1246693.
- Asteris, P.G. and Kolovos, K.G. (2019), "Self-compacting concrete strength prediction using surrogate models", Neural Comput. Appl., 31(1), 409-424. https://doi.org/10.1007/s00521-017-3007-7.
- Asteris, P.G. and Nikoo, M. (2019), "Artificial bee colony-based neural network for the prediction of the fundamental period of infilled frame structures", 31(9), 4837-4847. Neural Comput. Appl., 1-11. https://doi.org/10.1007/s00521-018-03965-1.
- Asteris, P.G. and Plevris, V. (2017), "Anisotropic masonry failure criterion using artificial neural networks", Neural Comput. Appl., 28(8), 2207-2229. https://doi.org/10.1007/s00521-016-2181-3
- Asteris, P.G., Argyropoulos, I., Cavaleri, L., Rodrigues, H., Varum, H., Thomas, J. and Lourenco, P.B. (2008), "Masonry compressive strength prediction using artificial neural networks", In International Conference on Transdisciplinary Multispectral Modeling and Cooperation for the Preservation of Cultural Heritage, Springer
- Asteris, P.G., Lemonis, M.E., Le, T.T. and Tsavdaridis, K.D. (2021a), "Evaluation of the ultimate eccentric load of rectangular CFSTs using advanced neural network modeling", Eng. Struct., 248, 113297. https://doi.org/10.1016/j.engstruct.2021.113297.
- Asteris, P.G., Lourenco, P.B., Hajihassani, M., Adami, C.E.N., Lemonis, M.E., Skentou, A.D., Marques, R., Nguyen, H., Rodrigues, H. and Varum, H. (2021b), "Soft computing-based models for the prediction of masonry compressive strength", Eng. Struct., 248, 113276. https://doi.org/10.1016/j.engstruct.2021.113276.
- Asteris, P.G., Nozhati, S., Nikoo, M., Cavaleri, L. and Nikoo, M. (2019), "Krill herd algorithm-based neural network in structural seismic reliability evaluation", Mech. Advan. Mater. Struct., 26(13), 1146-1153. https://doi.org/10.1080/15376494.2018.1430874.
- Asteris, P.G., Tsaris, A.K., Cavaleri, L., Repapis, C.C., Papalou, A., Di Trapani, F. and Karypidis, D.F. (2016), "Prediction of the fundamental period of infilled RC frame structures using artificial neural networks", Comput. Intell. Neurosci., 2016, 20. https://doi.org/10.1155/2016/5104907.
- Atashpaz-Gargari, E. and Lucas, C. (2007), "Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition", In 2007 IEEE Congress on Evolutionary Computation.
- Attouch, H. and Cabot, A. (2019), "Convergence of a Relaxed Inertial Forward-Backward Algorithm for Structured Monotone Inclusions", Appl. Mathem. Optimization. 80(3), 547-598. https://doi.org/10.1007/s00245-019-09584-z.
- Avci, O., Abdeljaber, O., Kiranyaz, S., Hussein, M., Gabbouj, M. and Inman, D.J. (2021), "A review of vibration-based damage detection in civil structures: From traditional methods to machine learning and Deep Learning applications", Mech. Syst. Signal Processing, 147, 107077. https://doi.org/10.1016/j.ymssp.2020.107077.
- Bayat, M., Pakar, I. and Bayat, M. (2013), "On the large amplitude free vibrations of axially loaded Euler-Bernoulli beams", Steel Compos. Struct., 14(1), 73-83. https://doi.org/10.12989/scs.2013.14.1.073.
- Bayat, M., Pakar, I. and Emadi, A. (2013), "Vibration of electrostatically actuated microbeam by means of homotopy perturbation method", Struct. Eng. Mech., 48(6), 823-831. https://doi.org/10.12989/sem.2013.48.6.823.
- Betti, M., Facchini, L. and Biagini, P. (2015), "Damage detection on a three-storey steel frame using artificial neural networks and genetic algorithms", Meccanica, 50(3), 875-886. https://doi.org/10.1007/s11012-014-0085-9.
- Bischoff, P.H. (2005). "Reevaluation of deflection prediction for concrete beams reinforced with steel and fiber reinforced polymer bars", J. Struct. Eng., 131(5), 752-767. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:5(752).
- Bui, X.N., Muazu, M.A. and Nguyen, H. (2019), "Optimizing Levenberg-Marquardt backpropagation technique in predicting factor of safety of slopes after two-dimensional OptumG2 analysis", Eng. Comput., https://doi.org/10.1007/s00366-019-00741-0.
- Bui, X.N., Nguyen, H., Le, H.A., Bui, H.B. and Do, N.H. (2019), "Prediction of blast-induced air over-pressure in open-pit mine: Assessment of different artificial intelligence techniques", Nat. Resource. Res., https://doi.org/10.1007/s11053-019-09461-0.
- Cai, J., Burgess, I. and Plank, R. (2003), "A generalised steel/reinforced concrete beam-column element model for fire conditions", Eng. Struct., 25(6), 817-833. https://doi.org/10.1016/S0141-0296(03)00019-1.
- Cao, Q., Zhou, J., Wu, Z. and Ma, Z.J. (2019), "Flexural behavior of prestressed CFRP reinforced concrete beams by two different tensioning methods", Eng. Struct., 189, 411-422. https://doi.org/10.1016/j.engstruct.2019.03.051.
- Cascardi, A., Micelli, F. and Aiello, M.A. (2017), "An Artificial Neural Networks model for the prediction of the compressive strength of FRP-confined concrete circular columns", Eng. Struct., 140, 199-208. https://doi.org/10.1016/j.engstruct.2017.02.047.
- Cha, Y.J. and Buyukozturk, O. (2015), "Structural damage detection using modal strain energy and hybrid multiobjective optimization", Comput. Aided Civil Infrastruct. Eng., 30(5), 347-358. https://doi.org/10.1111/mice.12122.
- Chatterjee, S., Sarkar, S., Hore, S., Dey, N., Ashour, A.S. and Balas, V.E. (2017), "Particle swarm optimization trained neural network for structural failure prediction of multistoried RC buildings", Neural Comput. Appl. 28(8), 2005-2016. https://doi.org/10.1007/s00521-016-2190-2.
- Chopra, P., Sharma, R.K. and Kumar, M. (2016), "Prediction of compressive strength of concrete using artificial neural network and genetic programming", Adv. Mater. Sci. Eng., 2016. https://doi.org/10.1155/2016/7648467.
- Chou, J.S., Ngo, N.T. and Pham, A.D. (2015), "Shear strength prediction in reinforced concrete deep beams using nature-inspired metaheuristic support vector regression", J. Comput. Civil Eng., 30(1), 04015002. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000466.
- Darain, K.M., Shamshirband, S., Jumaat, M.Z. and Obaydullah, M. (2015), "Adaptive neuro fuzzy prediction of deflection and cracking behavior of NSM strengthened RC beams", Construct. Build. Mater., 98, 276-285. https://doi.org/10.1016/j.conbuildmat.2015.08.096.
- De Granrut, M., Simon, A. and Dias, D. (2019), "Artificial neural networks for the interpretation of piezometric levels at the rock-concrete interface of arch dams", Eng. Struct., 178, 616-634. https://doi.org/10.1016/j.engstruct.2018.10.033.
- Eckstein, S. and Kupper, M. (2019), "Computation of optimal transport and related hedging problems via penalization and neural networks", Appl. Mathem. Opimization. https://doi.org/10.1007/s00245-019-09558-1.
- Facchini, L., Betti, M. and Biagini, P. (2014), "Neural network based modal identification of structural systems through output-only measurement", Comput. Struct., 138, 183-194. https://doi.org/10.1016/j.compstruc.2014.01.013.
- Fathalla, E., Tanaka, Y. and Maekawa, K. (2018), "Remaining fatigue life assessment of in-service road bridge decks based upon artificial neural networks", Eng. Structures, 171, 602-616. https://doi.org/10.1016/j.engstruct.2018.05.122.
- Flood, I., Muszynski, L. and Nandy, S. (2001), "Rapid analysis of externally reinforced concrete beams using neural networks". Comput. Struct., 79(17), 1553-1559. https://doi.org/10.1016/S0045-7949(01)00033-5.
- Frankish, K. and Ramsey, W.M. (2014), The Cambridge Handbook of Artificial Intelligence: Cambridge University Press.
- Friedman, J., Hastie, T. and Tibshirani, R. (2010), "Regularization paths for generalized linear models via coordinate descent", J. Statistic. Software, 33(1), 1-22.
- Gao, W., Karbasi, M., Hasanipanah, M., Zhang, X. and Guo, J. (2018), "Developing GPR model for forecasting the rock fragmentation in surface mines", Eng. Comput., 34(2), 339-345. https://doi.org/10.1007/s00366-017-0544-8.
- Gao, W., Raftari, M., Rashid, A.S.A., Mu'azu, M.A. and Jusoh, W. A.W. (2019), "A predictive model based on an optimized ANN combined with ICA for predicting the stability of slopes", Eng. Comput., 1-20. https://doi.org/10.1007/s00366-019-00702-7.
- Gerist, S. and Maheri, M.R. (2016), "Multi-stage approach for structural damage detection problem using basis pursuit and particle swarm optimization", J. Sound Vib., 384, 210-226. https://doi.org/10.1016/j.jsv.2016.08.024.
- Gerist, S. and Maheri, M.R. (2019), "Structural damage detection using imperialist competitive algorithm and damage function", Appl. Soft Comput., 77, 1-23. https://doi.org/10.1016/j.asoc.2018.12.032.
- Ghali, A., Favre, R. and Elbadry, M. (2018), Concrete Structures: Stresses and Deformations: Analysis and Design for Serviceability, CRC Press.
- Hajihassani, M., Armaghani, D.J., Marto, A. and Mohamad, E.T. (2015), "Ground vibration prediction in quarry blasting through an artificial neural network optimized by imperialist competitive algorithm", Bull. Eng. Geology Environ., 74(3), 873-886. https://doi.org/10.1007/s10064-014-0657-x.
- Hammer, P.L. and Rudeanu, S. (2012), Boolean Methods in Operations Research and Related Areas, Springer Science & Business Media.
- Hegazy, T., Tully, S. and Marzouk, H. (1998), "A neural network approach for predicting the structural behavior of concrete slabs", Canadian J. Civil Eng., 25(4), 668-677. https://doi.org/10.1139/l98-009.
- Hosseini, S. and Al Khaled, A. (2014), "A survey on the imperialist competitive algorithm metaheuristic: implementation in engineering domain and directions for future research", Appl. Soft Comput., 24, 1078-1094. https://doi.org/10.1016/j.asoc.2014.08.024.
- Issa, M.S., Metwally, I.M. and Elzeiny, S.M. (2011), "Influence of fibers on flexural behavior and ductility of concrete beams reinforced with GFRP rebars", Eng. Struct., 33(5), 1754-1763. https://doi.org/10.1016/j.engstruct.2011.02.014.
- Kaczmarek, M. and Szymanska, A. (2016), "Application of artificial neural networks to predict the deflections of reinforced concrete beams", Studia Geotechnica Mechanica, 38(2), 37-46. https://doi.org/10.1515/sgem-2016-0017
- Kaklauskas, G. (2004), "Flexural layered deformational model of reinforced concrete members", Magazine Concrete Res., 56(10), 575-584. https://doi.org/10.1680/macr.2004.56.10.575
- Kardani, N., Bardhan, A., Samui, P., Nazem, M., Asteris, P.G. and Zhou, A. (2022), "Predicting the thermal conductivity of soils using integrated approach of ANN and PSO with adaptive and time-varying acceleration coefficients", Int. J. Thermal Sci., 173, 107427. https://doi.org/10.1016/j.ijthermalsci.2021.107427.
- Kaveh, A. and Talatahari, S. (2010), "Imperialist competitive algorithm for engineering design problems".
- Kennedy, C. and Ward, R. (2019), "Greedy Variance Estimation for the LASSO", Appl. Mathem. Optimization. 82(3), 1161-1182. https://doi.org/10.1007/s00245-019-09561-6
- Khademi, F. and Behfarnia, K. (2016), "Evaluation of concrete compressive strength using artificial neural network and multiple linear regression models", Iran Univ. Sci. Technol., 6(3), 423-432.
- Khademi, F., Akbari, M., Jamal, S.M., and Nikoo, M. (2017), "Multiple linear regression, artificial neural network, and fuzzy logic prediction of 28 days compressive strength of concrete", Front. Struct. Civil Eng., 11(1), 90-99. https://doi.org/10.1007/s11709-016-0363-9.
- Kim, S.H., Jung, C.Y. and Ahn, J.H. (2011), "Ultimate strength of composite structure with different degrees of shear connection", Steel Compos. Struct., 11(5), 375-390. https://doi.org/10.12989/scs.2011.11.5.375.
- Lapko, A. and Urbanski, M. (2015), "Experimental and theoretical analysis of deflections of concrete beams reinforced with basalt rebar". Archives Civil Mech. Eng., 15(1), 223-230. https://doi.org/10.1016/j.acme.2014.03.008.
- Lemonis, M., Hatzigeorgiou, G. and Asteris, P. (2022), "Seismic behaviour of irregular steel frames with beam and joint energy dissipation", Soil Dyn. Earthq. Eng., 152, 107052. https://doi.org/10.1016/j.soildyn.2021.107052.
- Mansouri, I., Shariati, M., Safa, M., Ibrahim, Z., Tahir, M. and Petkovic, D. (2019), "Analysis of influential factors for predicting the shear strength of a V-shaped angle shear connector in composite beams using an adaptive neuro-fuzzy technique", J. Intell. Manufact., 30(3), 1247-1257. https://doi.org/10.1007/s10845-017-1306-6
- Melchers, R.E., Li, C.Q. and Lawanwisut, W. (2008), "Probabilistic modeling of structural deterioration of reinforced concrete beams under saline environment corrosion", Struct. Safety, 30(5), 447-460. https://doi.org/10.1016/j.strusafe.2007.02.002.
- Mikaeil, R., Haghshenas, S.S., Haghshenas, S.S. and Ataei, M. (2018), "Performance prediction of circular saw machine using imperialist competitive algorithm and fuzzy clustering technique", Neural Comput. Appl., 29(6), 283-292. https://doi.org/10.1007/s00521-016-2557-4.
- Mishra, M., Agarwal, A. and Maity, D. (2019), "Neural-network-based approach to predict the deflection of plain, steel-reinforced, and bamboo-reinforced concrete beams from experimental data", SN Applied Sci., 1(6), 584. https://doi.org/10.1007/s42452-019-0622-1.
- Moayedi, H., Moatamediyan, A., Nguyen, H., Bui, X.N., Bui, D.T. and Rashid, A.S.A. (2019a), "Prediction of ultimate bearing capacity through various novel evolutionary and neural network models", Eng. Comput., 36(2), 671-687. https://doi.org/10.1007/s00366-019-00723-2.
- Moayedi, H., Raftari, M., Sharifi, A., Jusoh, W.A.W. and Rashid, A.S.A. (2019b), "Optimization of ANFIS with GA and PSO estimating α ratio in driven piles", Eng. Comput., 36(1), 227-238. https://doi.org/10.1007/s00366-018-00694-w.
- Mohamedbhai, G.T. (1971), A Study of the Deflections of Reinforced Concrete Flexural Members, The University of Manchester (United Kingdom).
- Mohammadhassani, M., Nezamabadi-Pour, H., Jumaat, M., Jameel, M., Hakim, S. and Zargar, M. (2013a), "Application of the ANFIS model in deflection prediction of concrete deep beam", Struct. Eng. Mech., 45(3), 323-336. https://doi.org/10.12989/sem.2013.45.3.323.
- Mohammadhassani, M., Nezamabadi-pour, H., Jumaat, M.Z., Jameel, M. and Arumugam, A. (2013b), "Application of artificial neural networks (ANNs) and linear regressions (LR) to predict the deflection of concrete deep beams", Comput. Concrete, 11(3), 237-252. https://doi.org/10.12989/cac.2013.11.3.237.
- Mohammadhassani, M., Saleh, A., Suhatril, M. and Safa, M. (2015), "Fuzzy modelling approach for shear strength prediction of RC deep beams", Smart Struct. Syst., 16(3), 497-519. https://doi.org/10.12989/sss.2015.16.3.497.
- Mokhtari, G., Ghanizadeh, A.J. and Ebrahimi, E. (2012), "Application of imperialist competitive algorithm to solve constrained economic dispatch", Int. J. Electric. Eng. Informatic., 4(4), 553. https://doi.org/10.15676/ijeei.2012.4.4.2
- Naderpour, H., Poursaeidi, O. and Ahmadi, M. (2018), "Shear resistance prediction of concrete beams reinforced by FRP bars using artificial neural networks", Measurement, 126, 299-308. https://doi.org/10.1016/j.measurement.2018.05.051.
- Naderpour, H., Rafiean, A.H. and Fakharian, P. (2018), "Compressive strength prediction of environmentally friendly concrete using artificial neural networks", J. Build. Eng., 16, 213-219. https://doi.org/10.1016/j.jobe.2018.01.007.
- Neumayer, S., Nimmer, M., Setzer, S. and Steidl, G. (2019), "On the Robust PCA and Weiszfeld's Algorithm", Appl. Mathem. Optimization. 82(3), 1017-1048. https://doi.org/10.1007/s00245-019-09566-1.
- Nguyen, H. (2019), "Support vector regression approach with different kernel functions for predicting blast-induced ground vibration: a case study in an open-pit coal mine of Vietnam", SN Appl. Sci., 1(4), 1-10. https://doi.org/10.1007/s42452-019-0295-9.
- Nguyen, H., Bui, X.N., Bui, H.B. and Cuong, D.T. (2019a), "Developing an XGBoost model to predict blast-induced peak particle velocity in an open-pit mine: a case study", Acta Geophysica, 67(2), 477-490. https://doi.org/10.1007/s11600-019-00268-4.
- Nguyen, H., Bui, X.N., Bui, H.B., and Mai, N.L. (2018a), "A comparative study of artificial neural networks in predicting blast-induced air-blast overpressure at Deo Nai open-pit coal mine, Vietnam", Neural Comput. Appl., 1-17. https://doi.org/10.1007/s00521-018-3717-5.
- Nguyen, H., Bui, X.N., Tran, Q.H., and Mai, N.L. (2019b), "A new soft computing model for estimating and controlling blast-produced ground vibration based on hierarchical K-means clustering and cubist algorithms", Appl. Soft Comput., 77, 376-386. https://doi.org/10.1016/j.asoc.2019.01.042.
- Nguyen, H., Bui, X.N., Tran, Q.H., Le, T.Q., Do, N.H. and Hoa, L. T.T. (2018b), "Evaluating and predicting blast-induced ground vibration in open-cast mine using ANN: A case study in Vietnam", SN Appl. Sci., 1(1), 125. https://doi.org/10.1007/s42452-018-0136-2.
- Nguyen, H., Drebenstedt, C., Bui, X.N., and Bui, D.T. (2019c), "Prediction of blast-induced ground vibration in an open-pit mine by a novel hybrid model based on clustering and artificial neural network", Nat. Resouce Res., https://doi.org/10.1007/s11053-019-09470-z.
- Nguyen, H., Moayedi, H., Foong, L.K., Al Najjar, H.A.H., Jusoh, W.A.W., Rashid, A.S.A. and Jamali, J. (2019d), "Optimizing ANN models with PSO for predicting short building seismic response", Eng. Comput., https://doi.org/10.1007/s00366-019-00733-0.
- Nguyen, H., Moayedi, H., Jusoh, W.A.W. and Sharifi, A. (2019e), "Proposing a novel predictive technique using M5Rules-PSO model estimating cooling load in energy-efficient building system", Eng. Comput.,https://doi.org/10.1007/s00366-019-00735-y.
- Nie, J., Fan, J. and Cai, C. (2008), "Experimental study of partially shear-connected composite beams with profiled sheeting", Eng. Struct., 30(1), 1-12. https://doi.org/10.1016/j.engstruct.2007.02.016.
- Nikoo, M., Torabian Moghadam, F. and Sadowski, L. (2015), "Prediction of concrete compressive strength by evolutionary artificial neural networks", Advan. Mater. Sci. Eng., 2015. https://doi.org/10.1155/2015/849126.
- Ogutu, J.O., Schulz-Streeck, T. and Piepho, H.P. (2012), "Genomic selection using regularized linear regression models: ridge regression, lasso, elastic net and their extensions", In BMC proceedings, BioMed Central.
- Pakar, I. and Bayat, M. (2012), "741. Analytical study on the nonlinear vibration of Euler-Bernoulli beams", Methods, 10, 17.
- Pakar, I. and Bayat, M. (2013), "An analytical study of nonlinear vibrations of buckled Euler Bernoulli beams", Methods, 18, 25.
- Parsajoo, M., Armaghani, D.J. and Asteris, P.G. (2021), "A precise neuro-fuzzy model enhanced by artificial bee colony techniques for assessment of rock brittleness index", Neural Comput. Appl.. https://doi.org/10.1007/s00521-021-06600-8.
- Rad, M.Y., Haghshenas, S.S. and Haghshenas, S. (2014), Mechanostratigraphy of cretaceous rocks by fuzzy logic in East Arak, Iran. In The 4th International Workshop on Computer Science and Engineering-Summer, WCSE, 2014
- Ritter, S., Barrett, D.G., Santoro, A. and Botvinick, M.M. (2017), "Cognitive psychology for deep neural networks: A shape bias case study", In Proceedings of the 34th International Conference on Machine Learning-Volume 70.
- Russell, S.J. and Norvig, P. (2016), Artificial Intelligence: A Modern Approach. Pearson Education Limited.
- Safa, M., Shariati, M., Ibrahim, Z., Toghroli, A., Baharom, S.B., Nor, N.M. and Petkovic, D. (2016), "Potential of adaptive neuro fuzzy inference system for evaluating the factors affecting steel-concrete composite beam's shear strength", Steel Compos Struct, 21(3), 679-688. https://doi.org/10.12989/scs.2016.21.3.679.
- Sakr, M.A. and Sakla, S.S. (2008), "Long-term deflection of cracked composite beams with nonlinear partial shear interaction: I-Finite element modeling", J. Construct. Steel Research, 64(12), 1446-1455. https://doi.org/10.1016/j.jcsr.2008.01.003.
- Sakr, M.A. and Sakla, S.S. (2009). "Long-term deflection of cracked composite beams with nonlinear partial shear interaction-a study using neural networks", Eng. Struct., 31(12), 2988-2997. https://doi.org/10.1016/j.engstruct.2009.07.027.
- Shabani, H., Vahidi, B. and Ebrahimpour, M. (2013), "A robust PID controller based on imperialist competitive algorithm for load-frequency control of power systems", ISA Transactions, 52(1), 88-95. https://doi.org/10.1016/j.isatra.2012.09.008.
- Shin, S., Seo, D. and Han, B. (2009), "Performance of concrete beams reinforced with GFRP bars", J. Asian Architect. Build. Eng., 8(1), 197-204. https://doi.org/10.3130/jaabe.8.197.
- Tadesse, Z., Patel, K., Chaudhary, S. and Nagpal, A. (2012), "Neural networks for prediction of deflection in composite bridges", J. Construct. Steel Res., 68(1), 138-149. https://doi.org/10.1016/j.jcsr.2011.08.003.
- Venkateshwaran, A. and Tan, K.H. (2018), "Load-carrying capacity of steel fiber reinforced concrete beams at large deflections", Struct. Concrete, 19(3), 670-683. https://doi.org/10.1002/suco.201700129.
- Vila, J.P. and Gauchi, J.P. (2019), "Predictive control of discrete time stochastic nonlinear state space dynamical systems: A particle nonparametric approach", Appl. Mathem. Optimization, 80(1), 165-194. https://doi.org/10.1007/s00245-017-9462-9.
- Visintin, P., Sturm, A.B. and Oehlers, D.J. (2018), "Long-and short-term serviceability behavior of reinforced concrete beams: Mechanics models for deflections and crack widths", Struct. Concrete, 19(2), 489-507. https://doi.org/10.1002/suco.201700022.
- Walczak, S. (2019), "Artificial neural networks", In Advanced Methodologies and Technologies in Artificial Intelligence, Computer Simulation, and Human-Computer Interaction.
- Xing, Y., Han, Q., Xu, J., Guo, Q. and Wang, Y. (2016), "Experimental and numerical study on static behavior of elastic concrete-steel composite beams", J. Construct. Steel Res., 123, 79-92. https://doi.org/10.1016/j.jcsr.2016.04.023.
- Xu, J., Zhao, X., Yu, Y., Xie, T., Yang, G. and Xue, J. (2019), "Parametric sensitivity analysis and modelling of mechanical properties of normal-and high-strength recycled aggregate concrete using grey theory, multiple nonlinear regression and artificial neural networks", Construct. Build. Mater., 211, 479-491. https://doi.org/10.1016/j.conbuildmat.2019.03.234.
- Xu, S., Wang, Y., and Huang, A. (2014), "Application of imperialist competitive algorithm on solving the traveling salesman problem", Algorithms, 7(2), 229-242. https://doi.org/10.3390/a7020229.
- Yaseen, Z.M., Deo, R.C., Hilal, A., Abd, A.M., Bueno, L.C., Salcedo-Sanz, S. and Nehdi, M.L. (2018), "Predicting compressive strength of lightweight foamed concrete using extreme learning machine model", Advan. Eng. Software, 115, 112-125. https://doi.org/10.1016/j.advengsoft.2017.09.004.
- Yuan, H., Deng, H., Yang, Y., Weijian, Y. and Zhenggeng, Z. (2016), "Element-based effective width for deflection calculation of steel-concrete composite beams", J. Construct. Steel Res., 121, 163-172. https://doi.org/10.1016/j.jcsr.2016.02.010.
- Zhang, R., Castel, A. and Francois, R. (2009), "Serviceability limit state criteria based on steel-concrete bond loss for corroded reinforced concrete in chloride environment", Mater. Struct. 42(10), 1407. https://doi.org/10.1617/s11527-008-9460-0.
- Zhang, X., Nguyen, H., Bui, X.N., Tran, Q.H., Nguyen, D.A., Bui, D.T. and Moayedi, H. (2019), "Novel soft computing model for predicting blast-induced ground vibration in open-pit mines based on particle swarm optimization and XGBoost", Nat. Resources Res., 29(2), 711-721. https://doi.org/10.1007/s11053-019-09492-7.