Acknowledgement
This work was supported by Fundament Research Funds for the Central Universities [Grant No. 2242020R10037] and Basic Research Program of Jiangsu Province [Grant No. BK20211174].
References
- Abu Bakar, I.A., Kramer, O., Bordas, S. and Rabczuk, T. (2013), "Optimization of elastic properties and weaving patterns of woven composites", Compos, Struct., 100, 575-591. http://dx.doi.org/10.1016/j.compstruct.2012.12.043.
- Ai, L. and Gao, X.L. (2017), "Metamaterials with negative Poisson's ratio and non-positive thermal expansion", Compos. Struct., 162, 70-84. https://doi.org/10.1016/j.compstruct.2016.11.056.
- Axinte, A., Taranu, N., Bejan, L. and Hudisteanu, I. (2017), "Optimisation of fabric reinforced polymer composites using a variant of genetic algorithm", 24(6), 1479-1491. Appl. Compos. Mater., http://dx.doi.org/10.1007/s10443-017-9594-8.
- Barbero, E.J., Damiani, T.M. and Trovillion, J. (2005), "Micromechanics of fabric reinforced composites with periodic microstructure", Int, J. Solids Struct., 42(9-10), 2489-2504. http://dx.doi.org/10.1016/j.ijsolstr.2004.09.034.
- Bard, S., Schonl, F., Demleitner, M. and Altstadt, V. (2019), "Influence of fiber volume content on thermal conductivity in transverse and fiber direction of carbon fiber-reinforced epoxy laminates", Materials, 12(7), 1084. http://dx.doi.org/10.3390/ma12071084.
- Cadman, J.E., Zhou, S., Chen, Y. and Li, Q. (2013), "On design of multi-functional microstructural materials", J. Mater. Sci., 48(1), 51-66. http://dx.doi.org/10.1007/s10853-012-6643-4.
- Challis, V.J., Roberts, A.P. and Wilkins, A.H. (2008), "Design of three dimensional isotropic microstructures for maximized stiffness and conductivity", Int. J. Solids Struct., 45(14-15), 4130-4146. http://dx.doi.org/10.1016/j.ijsolstr.2008.02.025.
- Cherif, Z.E., Poilane, C., Vivet, A., Ben Doudou, B. and Chen, J. (2016), "About optimal architecture of plant fibre textile composite for mechanical and sorption properties", Compos. Struct., 140, 240-251. http://dx.doi.org/10.1016/j.compstruct.2015.12.030.
- Correia, J.A.R., Bai, Y. and Keller, T. (2015), "A review of the fire behaviour of pultruded GFRP structural profiles for civil engineering applications", Compos. Struct., 127, 267-287. https://doi.org/10.1016/j.compstruct.2015.03.006.
- Crookston, J.J., Long, A.C. and Jones, I.A. (2005), "A summary review of mechanical properties prediction methods for textile reinforced polymer composites", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 219(2), 91-109. https://doi.org/10.1243/146442005X10319.
- de Kruijf, N., Zhou, S., Li, Q. and Mai, Y.W. (2007), "Topological design of structures and composite materials with multiobjectives", Int. J. Solids Struct., 44(22), 7092-7109. http://dx.doi.org/10.1016/j.ijsolstr.2007.03.028.
- Drach, B., Kuksenko, D. and Sevostianov, I. (2016), "Effect of a curved fiber on the overall material stiffness", Int. J. Solids Struct., 100-101, 211-222, https://doi.org/10.1016/j.ijsolstr.2016.08.018.
- Esmaeeli, M., Nami, M.R. and Kazemianfar, B. (2019), "Geometric analysis and constrained optimization of woven z-pinned composites for maximization of elastic properties", Compos. Struct., 210, 553-566. https://doi.org/10.1016/j.compstruct.2018.11.070.
- Ghiasi, H., Fayazbakhsh, K., Pasini, D. and Lessard, L. (2010), "Optimum stacking sequence design of composite materials Part II: Variable stiffness design", Compos. Struct., 93(1), 1-13. Int. J. Heat Mass Transfer, 179, 121673. https://doi.org/10.1016/j.compstruct.2010.06.001.
- Liu, X., Rouf, K., Peng, B. and Yu, W. (2017), "Two-step homogenization of textile composites using mechanics of structure genome", Compos. Struct., 171, 252-262. https://doi.org/10.1016/j.compstruct.2017.03.029.
- Liu, Y., Qu, Z.G., Guo, J. and Zhao, X.M. (2019), "Numerical study on effective thermal conductivities of plain woven C/SiC composites with considering pores in interlaced woven yarns", Int. J. Heat Mass Transfer, 140, 410-419. https://doi.org/10.1016/j.ijheatmasstransfer.2019.06.007.
- Liu, Z., Guo, T., Han, D. and Li, A. (2020), "Experimental study on corrosion-fretting fatigue behavior of bridge cable wires", J. Bridge Eng., 25(12), 04020104. https://doi.org/10.1111/ffe.13331.
- Liu, Z., Guo, T., Yu, X., Huang, X. and Correia, J. (2021c), "Corrosion fatigue and electrochemical behaviour of steel wires used in bridge cables", Fatigue Fracture Eng. Mater. Struct., 44(1), 63-73. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001642.
- Matusiak, M. and Sikorski, K. (2011), "Influence of the structure of woven fabrics on their thermal insulation properties", Fibres Textiles Eastern Europe, 19(5), 46-53. http://www.fibtex.lodz.pl/article575.html.
- Mori, T. and Tanaka, K. (1973), "Average stress in matrix and average elastic energy of materials with misfitting inclusions", Acta Metallurgica, 21(5), 571-574. http://dx.doi.org/10.1016/0001-6160(73)90064-3.
- Rouf, K., Denton, N.L. and French, R.M. (2017), "Effect of fabric weaves on the dynamic response of two-dimensional woven fabric composites", J. Mater. Sci., 52(17), 10581-10591. https://doi.org/10.1007/s10853-017-1183-6.
- Scida, D., Aboura, Z., Benzeggagh, M.L. and Bocherens, E. (1999), "A micromechanics model for 3D elasticity and failure of woven-fibre composite materials", Compos. Sci. Technol., 59(4), 505-517. http://dx.doi.org/10.1016/S0266-3538(98)00096-7.
- Skocek, J., Zeman, J. and Sejnoha, M. (2008), "Effective properties of textile composites: application of the Mori-Tanaka method", Modelling Simulation Mater. Sci. Eng., 16(8), 085002. http://dx.doi.org/10.1088/0965-0393/16/8/085002.
- Vaidyanathan, R. and Gowayed, Y.A. (1996), "Optimization of elastic properties in the design of textile composites", Polymer Compos., 17(2), 305-311. http://dx.doi.org/10.1002/pc.10615.
- Vorel, J. and Sejnoha, M. (2009), "Evaluation of homogenized thermal conductivities of imperfect carbon-carbon textile composites using the Mori-Tanaka method", Struct. Eng. Mech., 33(4), 429-446. https://doi.org/10.12989/sem.2009.33.4.429.
- Wang, Z., Bai, J., Sobey, A., Xiong, J. and Shenoi, A. (2018), "Optimal design of triaxial weave fabric composites under tension", Compos. Struct., 201, 616-624. https://doi.org/10.1016/j.compstruct.2018.06.090.
- Wei, K., Peng, Y., Qu, Z., Pei, Y. and Fang, D. (2018), "A cellular metastructure incorporating coupled negative thermal expansion and negative Poisson's ratio", Int. J. Solids Struct., 150, 255-267. https://doi.org/10.1016/j.ijsolstr.2018.06.018.
- Yu, H., Heider, D. and Advani, S. (2015), "Prediction of effective through-thickness thermal conductivity of woven fabric reinforced composites with embedded particles", Composite Struct., 127, 132-140. https://doi.org/10.1016/j.compstruct.2015.03.015.
- Zeng, X., Long, A.C., Ashcroft, I. and Potluri, P. (2015), "Fibre architecture design of 3D woven composite with genetic algorithms: a unit cell based optimisation framework and performance assessment", In "Proceedings of The 20th International Conference on Composite Materials, 1-12.
- Zhao, Y., Jiao, Y., Song, L., Jiang, Q. and Li, J. (2016), "Influence of fabric architecture and weaving parameter on the thermal conductivities of 3D woven composites", J. Compos. Mater., 51(21), 3041-3051. https://doi.org/10.1177/0021998316681830.
- Zhou, X.Y., Gosling, P.D., Pearce, C.J., Ullah, Z. and Kaczmarczyk, L. (2016), "Perturbation-based stochastic multiscale computational homogenization method for woven textile composites", Int. J. Solids Struct., 80, 368-380. https://doi.org/10.1016/j.ijsolstr.2015.09.008.
- Zhou, X.Y., Ruan, X., Zhang, S., Xiong, W. and Ullah, Z. (2021), "Design optimization for thermal conductivity of plain-woven textile composites", Compos. Struct., 255, 112830. https://doi.org/10.1016/j.compstruct.2020.112830.
- Zhu, J., Ma, T. and Dong, Z. (2020), "Evaluation of optimum mixing conditions for rubberized asphalt mixture containing reclaimed asphalt pavement", Construct. Build. Mater., 234, 117426. https://doi.org/10.1016/j.conbuildmat.2019.117426.