DOI QR코드

DOI QR Code

Development of new inner diaphragms for a H-beam and composite box column joint

  • Khan, Mahbub (School of Civil Engineering, University of Sydney) ;
  • Uy, Brian (School of Civil Engineering, University of Sydney) ;
  • Kim, Jin W (Steel Solution Research Lab, POSCO)
  • Received : 2021.03.24
  • Accepted : 2021.12.22
  • Published : 2022.02.10

Abstract

This paper presents an experimental and a numerical investigation of a H-beam - composite box column joint fabricated with two new inner diaphragms and a continuous inner diaphragm. The main objective of the current research project is to investigate the structural performance of the newly developed inner diaphragms under a cyclic loading protocol. Hysteretic behaviour of the composite joints is analysed to investigate the structural performance of the new and continuous inner diaphragms. This paper compares the result of the finite element (FE) models with the new and continuous inner diaphragms against their counterpart experimental results. To produce a design criterion for the newly developed inner diaphragms, yielding or failure area of the inner diaphragms under tensile stress is analysed from the FE results.

Keywords

Acknowledgement

The research described in this paper was financially supported by POSCO.

References

  1. AISC (2016), Seismic Provisions for Structural Steel Buildings, Chicago, Illinois.
  2. Al Zand, A.W., Wan Badaruzzaman, W.H., Ali, M.M., Hasan, Q.A. and Al-Shaikhli, M.S. (2020), "Flexural performance of cold-formed square CFST beams strengthened with internal stiffeners", Steel Compos. Struct.. 34(1), 123-139. https://doi.org/10.12989/scs.2020.34.1.123.
  3. Attard, M.M. and Setunge, S. (1996), "Stress-Strain Relationship of Confined and Unconfined Concrete", ACI Mater. J. 93(5). https://doi.org/10.14359/9847.
  4. CECS (2004), Technical Specification for Structures with Concrete-Filled Rectangular Steel Tube Members (CECS 159-2004), China Planning press, Beijing, China.
  5. Ding, C., Bai, Y., Yang, K. and Zhang, J. (2021), "Cyclic behaviour of prefabricated connections for steel beam to concrete filled steel tube column", J. Construct. Steel Res., 176 106422. https://doi.org/10.1016/j.jcsr.2020.106422.
  6. Doung, P. and Sasaki, E. (2019), "Load-deformation characteristics and performance of internal diaphragm connections to box columns", Thin-Walled Struct., 143 106221. https://doi.org/10.1016/j.tws.2019.106221.
  7. Doung, P., Leelataviwat, S. and Sasaki, E. (2021), "Tensile strength and failure mechanism of internal diaphragms in wide flange beam-to-box column connections with concrete filling", J. Build. Eng.. 34, 102037. https://doi.org/10.1016/j.jobe.2020.102037.
  8. FEMA (2000), State of the Art report on Connection Performance, FEMA, Washington, D.C.
  9. Fukumoto, T. and Morita, K. (2005), "Elastoplastic Behavior of Panel Zone in Steel Beam-to-Concrete Filled Steel Tube Column Moment Connections", J. Struct. Eng., 131(12), 1841-1853. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:12(1841).
  10. Goto, Y., Kumar, G.P. and Kawanishi, N. (2010), "Nonlinear Finite-Element Analysis for Hysteretic Behavior of Thin-Walled Circular Steel Columns with In-Filled Concrete", J. Struct. Eng., 136(11), 1413-1422. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000240.
  11. Goto, Y., Mizuno, K. and Kumar, G.P. (2012), "Nonlinear Finite Element Analysis for Cyclic Behavior of Thin-Walled Stiffened Rectangular Steel Columns with In-Filled Concrete", J. Struct. Eng., 138(5), 571-584. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000504.
  12. Hai, L.T., Sun, F.F., Zhao, C., Li, G.Q. and Wang, Y.B. (2018), "Experimental cyclic behavior and constitutive modeling of high strength structural steels", Construct. Build. Mater., 189, 1264-1285. https://doi.org/10.1016/j.conbuildmat.2018.09.028.
  13. Kang, L., Leon, R.T. and Lu, X. (2015), "Shear strength analyses of internal diaphragm connections to CFT columns", Steel Compos. Struct., 18(5), 1083-1101. https://doi.org/10.12989/scs.2015.18.5.1083.
  14. Kasar, A.A., Bharti, S.D., Shrimali, M.K. and Goswami, R. (2017), "Mechanics based force-deformation curve of steel beam to column moment joints", Steel Compos. Struct., 25(1), 19-34. https://doi.org/10.12989/scs.2017.25.1.019.
  15. Khan, M., Uy, B., Tao, Z. and Mashiri, F. (2017), "Behaviour and design of short high-strength steel welded box and concrete-filled tube (CFT) sections", Eng. Struct., 147 458-472. https://doi.org/10.1016/j.engstruct.2017.06.016.
  16. Khan, M., Uy, B., Tao, Z. and Mashiri, F. (2017), "Concentrically loaded slender square hollow and composite columns incorporating high strength properties", Eng. Struct., 131 69-89. https://doi.org/10.1016/j.engstruct.2016.10.015.
  17. Krolo, P., Grandic, D. and Smolcic, Z. (2016), "Experimental and Numerical Study of Mild Steel Behaviour under Cyclic Loading with Variable Strain Ranges", Adv. Mater. Sci. Eng., 2016 7863010. https://doi.org/10.1155/2016/7863010.
  18. Lai, Z., Fischer, E.C. and Varma, A.H. (2019), "Database and Review of Beam-to-Column Connections for Seismic Design of Composite Special Moment Frames", J. Struct. Eng., 145(5), 04019023. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002295.
  19. Lee, J. and Fenves, G.L. (1998), "Plastic-Damage Model for Cyclic Loading of Concrete Structures", J. Eng. Mech., 124(8), 892-900. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892).
  20. Morino, S. (2002), "Recent developments on concrete-filled steel tube members in Japan", Compos. Construct. Steel Concrete IV. 644-655. https://doi.org/10.1061/40616(281)56.
  21. Morita, K., Yokoyama, Y., Kawamata, Y. and Matsumura, H. (1991), "Effect of inner ring stiffener on the strength of connection between steel beam and concrete-filled square tube column", J. Struct. Construct. Eng., (Transactions of AIJ). 422(0), 85-96. https://doi.org/10.3130/aijsx.422.0_85.
  22. Nishiyama, I. and Morino, S. (2004), "US-Japan cooperative earthquake research program on CFT structures: achievements on the Japanese side", Progress Struct. Eng. Mater., 6(1), 39-55. https://doi.org/10.1002/pse.164.
  23. Nishiyama, I., Fujimoto, T., Fukumoto, T. and Yoshioka, K. (2004), "Inelastic force-deformation response of joint shear panels in beam-column moment connections to concrete-filled yubes", J. Struct. Eng., 130(2), 244-252. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(244).
  24. Qin, Y., Chen, Z. and Wang, X. (2014), "Elastoplastic behavior of through-diaphragm connections to concrete-filled rectangular steel tubular columns", J. Construct. Steel Res., 93 88-96. https://doi.org/10.1016/j.jcsr.2013.10.011.
  25. Qin, Y., Chen, Z., Bai, J. and Li, Z. (2016), "Test of extended thick-walled through-diaphragm connection to thick-walled CFT column", Steel Compos. Struct., 20(1), 1-20. https://doi.org/10.12989/scs.2016.20.1.001.
  26. Rong, B., Liu, R., Zhang, R., Chen, Z. and Apostolos, F. (2016), "Flexural bearing capacity of diaphragm-Through joints of concrete-filled square steel tubular columns", Steel Compos. Struct., 20(3), 487-500. https://doi.org/10.12989/scs.2016.20.3.487.
  27. Rong, B., Yin, S., Zhang, R., Wang, L., Yang, Z., Li, H. and Wan, W. (2020), "Seismic performance of beam-to- SST column connection with external diaphragm", Steel Compos. Struct., 37(6), 633-647. https://doi.org/10.12989/scs.2020.37.6.633.
  28. Schneider, S.P. (1998), "Axially loaded concrete-filled steel tubes", J. Struct. Eng., 124(10), 1125-1138. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:10(1125).
  29. Thai, H.T., Uy, B., Khan, M., Tao, Z. and Mashiri, F. (2014), "Numerical modelling of concrete-filled steel box columns incorporating high strength materials", J. Construct. Steel Res., 102 256-265. https://doi.org/10.1016/j.jcsr.2014.07.014.
  30. Tsai, C.Y., Tsai, K.C., Li, C.H., Wu, C.C., Lin, K.C. and Jhuang, S.J. (2020), "Seismic fracture evaluation of diaphragm joints in welded beam-to-box column moment connections", Earthq. Eng. Struct. Dyn., 49(13), 1344-1362. https://doi.org/10.1002/eqe.3293.
  31. Vulcu, C., Stratan, A., Ciutina, A. and Dubina, D. (2017), "Beam-to-CFT High-Strength Joints with External Diaphragm. I: Design and Experimental Validation", J. Struct. Eng., 143(5), 04017001. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001709.
  32. Vulcu, C., Stratan, A., Ciutina, A. and Dubina, D. (2017), "Beamto-CFT High-Strength Joints with External Diaphragm. II: Numerical Simulation of Joint Behavior", J. Struct. Eng., 143(5), 04017002. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001693.
  33. Yu, Y., Chen, Z. and Wang, X. (2015), "Effect of column flange flexibility on WF-beam to rectangular CFT column connections", J. Construct. Steel Res., 106 184-197. https://doi.org/10.1016/j.jcsr.2014.12.008.
  34. Yu, Y., Lan, L., Chen, Z. and Huang, J. (2019), "Mechanical and seismic behaviors of bottom-flange-bolted upper-flange-welded through-diaphragm connections", J. Construct. Steel Res., 156 86-95. https://doi.org/10.1016/j.jcsr.2019.01.015.