DOI QR코드

DOI QR Code

Simulation Study on the Effect of Pre-blow Timing on the Injection Stretch Blow Molding

  • Dong-Hae Choi (Department of Mechanical System Design Engineering, Seoul National University of Science and Technology) ;
  • Kyoung Woo Nam (Samyang Packaing Co.) ;
  • Min-Young Lyu (Department of Mechanical System Design Engineering, Seoul National University of Science and Technology)
  • Received : 2022.09.13
  • Accepted : 2022.09.30
  • Published : 2022.12.31

Abstract

Research on the reduction of plastic use to prevent environmental pollution is urgently needed. Accordingly, studies on reducing the weight of polyethylene terephthalate (PET) bottles are currently being conducted. PET bottles are fabricated by injection stretch blow molding. In this study, stretch blow molding for fabricating PET bottles using preform studied through a computer simulation. Blowing characteristics are analyzed by varying the start time of the pre-blow, which is one of the process conditions of stretch blow molding. Simulation results and the preform inflation process are presented, and the parameters of stretch ratio, stretching path, thickness distribution, and weight distribution of blown PET bottles are investigated.

Keywords

Acknowledgement

본 결과물은 환경부의 재원으로 한국환경산업기술원의 재활용 저해제품 순환이용성 개선 기술개발사업의 지원을 받아 연구되었습니다(202003080006).

References

  1. N. H. Kim, I. Y. Woo, K. W. Nam, B. R. Yeon, M. R. Kim, and M.-Y. Lyu, "Comparison of Injection Molding Characteristics according to Thickness Variations of Preform for PET bottle", Elast. Compos., 56, 164 (2021).
  2. Z. Bashir, I. Al-Aloush, I. Al-Raqibah, and M. Ibrahim, "Evaluation of three methods for the measurement of crystallinity of PET resins, preforms, and bottles", Polym. Eng. Sci., 40, 2442 (2000).
  3. J. S. Schaul, "Drying and Injection Molding Pet for Beverage Bottle Preforms", Polym. Plast Technol. Eng., 16, 209, (1981).
  4. Z. J. Yang, E. Harkin-Jones, G. H. Menary, and C. G. Armstrong, "A non-isothermal finite element model for injection stretch-blow molding of PET bottles with parametric studies", Polym. Eng. Sci., 44, 1379 (2004).
  5. H. Haddad, S. Masood, and D. U. Erbulut, "A study of blow moulding simulation and structural analysis for PET bottles", Aust. J. Mech. Eng., 7, 69 (2009).
  6. J. Nixon, G. H. Menary, and S. Yan, "Finite element simulations of stretch-blow moulding with experimental validation over a broad process window", Int. J. Mater. Form., 10, 793 (2017).
  7. A. Lontos and A. Gregoriou, "The effect of the deformation rate on the wall thickness of 1.5LT PET bottle during ISBM (Injection Stretch Blow Molding) process", Procedia CIRP., 81, 1307 (2019).
  8. F. Daver and B. Demirel, "A simulation study of the effect of preform cooling time in injection stretch blow molding", J. Mater. Proces. Technol., 212, 2400 (2012).
  9. P. Wawrzyniak, "The Influence of Stretch Rod Speed on the Relationship between Preblown Bottle Aesthetic Quality and Final Blown Bottle Thickness Profile in Stretch Blow Molding from Preform Process", Appl. Mech. Mater., 797, 383 (2015).
  10. S. Bagherzadeh, F. R. Biglari, and K. Nikbin, "Parameter study of stretch-blow moulding process of polyethylene terephthalate bottles using finite element simulation", Proc. Inst. Mech. Eng. B. J. Eng. Manuf., 224, 1217 (2010).
  11. F. M. Schmidt, J. F. Agassant, and M. Bellet, "Experimental study and numerical simulation of the injection stretch/blow molding process", Polym. Eng. Sci., 38, 1399 (1998).
  12. J. Biglione, Y. Bereaux, and J.-Y. Charmeau, "Numerical Simulation of the Injection Blow Molding Single Stage Process: Shaping of Two Different Geometries and Comparison with Experimental Thickness Measurements", Int. Polym. Process, 31, 442 (2016).
  13. G. H. Menary et al., "Validating injection stretch-blow molding simulation through free blow trials", Polym. Eng. Sci., 50, 1047 (2010).
  14. X.-T. Pham, F. Thibault, and L.-T. Lim, "Modeling and simulation of stretch blow molding of polyethylene terephthalate", Polym. Eng. Sci., 44, 1460 (2004).
  15. H.-X. Huang, Z.-S. Yin, and J.-H. Liu, "Visualization study and analysis on preform growth in polyethylene terephthalate stretch blow molding", J. Appl. Polym. Sci., 103, 564 (2007).
  16. J. P. McEvoy, C. G. Armstrong, and R. J. Crawford, "Simulation of the stretch blow molding process of PET bottles", Adv. Polym. Technol., 17, 339 (1998).
  17. B. Cosson, L. Chevalier, and J. Yvonnet, "Optimization of the Thickness of PET Bottles during Stretch Blow Molding by Using a Mesh-free (Numerical) Method", Int. Polym. Process, 24, 223 (2009).
  18. M. Bordlval, F. M. Schmidt, Y. le Maoult, and V. Velay, "Optimization of preform temperature distribution for the stretch-blow molding of PET bottles: Infrared heating and blowing modeling", Polym. Eng. Sci., 49, 783 (2009).
  19. M.-Y. Lyu and Y. Pae, "Bottom design of carbonated soft drink poly(ethylene terephthalate) bottle to prevent solvent cracking", J. Appl. Polym. Sci., 88, 1145 (2003).
  20. M. Bordival, F. M. Schmidt, Y. le Maoult, and V. Velay, "Simulation of the two stages stretch-blow molding process: Infrared heating and blowing modeling", AIP Conf. Proc., 908, 519 (2007).
  21. M.-Y. Lyu, H. C. Kim, J. S. Lee, H. C. Shin, and Y. Pae, "Causes of Cracks in Petaloid Bottom of Carbonated PET Bottle", Int. Polym. Process, 16, 72 (2001).
  22. S. Hwan Cho, J. S. Hong, and M. Young Lyu, "Investigation of the Molding Conditions to Minimize Residual Stress and Shrinkage in Injection Molded Preform of PET Bottle", Macromol. Res., 35, 467 (2011).
  23. M. L. Williams, R. F. Landel, and J. D. Ferry, "The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-forming Liquids", J. Am. Chem. Soc., 77, 3701 (1955).