References
- Andreotti, G., Calvi, G.M., Soga, K., Gong, C. and Ding, W. (2020), "Cyclic model with damage assessment of longitudinal joints in segmental tunnel linings", Tunn. Undergr. Sp. Tech., 103, 103472. https://doi.org/10.1016/j.tust.2020.103472.
- Arnau, O. and Molins, C. (2011), "Experimental and analytical study of the structural response of segmental tunnel linings based on an in situ loading test. Part 2: Numerical simulation", Tunn. Undergr. Sp. Tech., 26(6), 778-788. https://doi.org/10.1016/j.tust.2011.04.005.
- Blom, C. (2002), "Design philosophy of concrete linings for tunnel in soft soils", Ph.D. Dissertation, Delft University of Technology (TU Delft), Delft.
- Chaipanna, P. and Jongpradist, P. (2019), "3D response analysis of a shield tunnel segmental lining during construction and a parametric study using the ground-spring model", Tunn. Undergr. Sp. Tech., 90, 369-382. https://doi.org/10.1016/j.tust.2019.05.015.
- Darya Khak Pey Consulting Engineers (2009), "Geotechnical studies report the southern part of the metro Tehran line 6", Tehran Urben Railway Corporation.
- Ding, W.Q., Yue, Z.Q., Tham, L.G., Zhu, H.H., Lee, C.F. and Hashimoto, T. (2004), "Analysis of shield tunnel", Int. J. Numer. Anal. Method. Geomech., 28(1), 57-91. https://doi.org/10.1002/nag.327.
- Do, N.A., Dias, D., Oreste, P. and Djeran-Maigre, I. (2013), "2D numerical investigation of segmental tunnel lining behavior", Tunn. Undergr. Sp. Tech., 37, 115-127. https://doi.org/10.1016/j.tust.2013.03.008.
- Ebrahimi, S., Hadei, M.R. and Rashiddel, A. (2020), "Numerical investigation of innovative support frame of openings in the segmental tunnel lining", Open Constr. Build. Technol. J., 14, 358-369. https://doi.org/10.2174/1874836802014010358.
- El Naggar, H. and Hinchberger, S.D. (2008), "An analytical solution for jointed tunnel linings in elastic soil or rock", Can. Geotech. J., 45(11), 1572-1593. https://doi.org/10.1139/T08-075.
- German Tunneling Committee (DAUB) (2001), "Concrete Lining for Tunnel Built by Underground Construction", German Committee for Underground Construction.
- Gladwell, G.M. (1980), Contact Problems in the Classical Theory of Elasticity, Springer Science & Business Media.
- GMBH Consulting Engineers (2011), "Report on the static design of the segmental lining for MetroTehran Line 6", Tehran Urben Railway Corporation.
- Golpasand, M.R.B., Do, N.A., Dias, D. and Nikudel, M.R. (2018), "Effect of the lateral earth pressure coefficient on settlements during mechanized tunneling", Geomech. Eng., 16(6), 643-654. https://doi.org/10.12989/gae.2018.16.6.643.
- Gong, C., Ding, W. and Xie, D. (2020), "Parametric investigation on the sealant behavior of tunnel segmental joints under water pressurization", Tunn. Undergr. Sp. Tech., 97, 103231. https://doi.org/10.1016/j.tust.2019.103231.
- Guan, Z., Deng, T., Wang, G. and Jiang, Y. (2015), "Studies on the key parameters in segmental lining design", J. Rock Mech. Geotech. Eng., 7(6), 674-683. https://doi.org/10.1016/j.jrmge.2015.08.008.
- Guglielmetti, V., Grasso, P., Mahtab, A. and Xu, S. (2007), Mechanized Tunnelling in Urban Areas: Design Methodology and Construction Control, Taylor & Francis Group, London, UK.
- Hefny, A.M. and Chua, H.C. (2006), "An investigation into the behaviour of jointed tunnel lining", Tunn. Undergr. Sp. Tech., 21(3), 428. https://doi.org/10.1016/j.tust.2005.12.070.
- Hejazi, Y., Dias, D. and Kastner, R. (2008), "Impact of constitutive models on the numerical analysis of underground constructions", Acta Geotech., 3(4), 251-258. https://doi.org/10.1007/s11440-008-0056-1.
- Herrenknecht A.G. (2009), "S-523 Earth Pressure Balance Shield", Tehran Metro Line 3.
- Huang, Z.r., Zhu, W., Liang, J.h., Lin, J. and Jia, R. (2006), "Three-dimensional numerical modelling of shield tunnel lining", Tunn. Undergr. Sp. Tech., 21(3), 434. https://doi.org/10.1016/j.tust.2005.12.076.
- Working Group No. 2, International Tunnelling Association (ITA) (2000), "Guidelines for design of shield tunnel lining", Tunn. Undergr. Sp. Tech., 15(3), 303-331. https://doi.org/10.1016/S0886-7798(00)00058-4.
- Itasca Consulting Group Inc. (2019), FLAC-Fast Lagrangian Analysis of Continua (Version 8.1), Minneapolis, Minnesota, User's manual.
- Itasca Consulting Group Inc. (2012), FLAC3D-Fast Lagrangian Analysis of Continua (Version 5.0), Minneapolis, Minnesota, User's manual.
- Janssen, p. (1983), "Tragverhalten von Tunnelausbauten mit Gelenktubbings [Load carrying behavior of segmented tunnel linings]", Technische Universitat Carolo-Wilhelmina zu Braunschweig, Braunschweig (In German).
- JSCE (2016), Standard Specifications for Tunnelling: Shield Tunnels, Working Group for Shield Tunnels, Tokyo.
- Kavvadas, M., Litsas, D., Vazaios, I. and Fortsakis, P. (2017), "Development of a 3D finite element model for shield EPB tunnelling", Tunn. Undergr. Sp. Tech., 65, 22-34. https://doi.org/10.1016/j.tust.2017.02.001.
- Klappers, C., Grubl, F. and Ostermeier, B. (2006), "Structural analyses of segmental lining - coupled beam and spring analyses versus 3D-FEM calculations with shell elements", Tunn. Undergr. Sp. Tech., 21(3), 254-255. https://doi.org/10.1016/j.tust.2005.12.116.
- Kontogianni, V. and Stiros, S.C. (2020), "Ground loss and static soil-structure interaction during urban tunnel excavation: evidence from the excavation of the athens metro", Infrastructures, 5(8). https://doi:10.3390/infrastructures5080064.
- Koyama, Y. (2003), "Present status and technology of shield tunneling method in Japan", Tunn. Undergr. Sp. Tech., 18(2), 145-159. https://doi.org/10.1016/S0886-7798(03)00040-3.
- Lee, K.M., Hou, X.Y., Ge, X.W. and Tang, Y. (2001), "An analytical solution for a jointed shield-driven tunnel lining", Int. J. Numer. Anal. Methods Geomech., 25(4), 365-390. https://doi.org/10.1002/nag.134.
- Li, X., Yan, Z., Wang, Z. and Zhu, H. (2015), "A progressive model to simulate the full mechanical behavior of concrete segmental lining longitudinal joints", Eng. Struct., 93, 97-113. https://doi.org/10.1016/j.engstruct.2015.03.011.
- Liu, B., Yu, Z., Han, Y., Wang, Z., Yang, S. and Liu, H. (2020), "A simplified combined analytical method for evaluating the effect of deep surface excavations on the shield metro tunnels", Geomech. Eng., 23(5), 405-418. https://doi.org/10.12989/gae.2020.23.5.405.
- Liu, X., Zhang, Y., Bao, Y. and Song, W. (2022), "Investigation of the structural effect induced by stagger joints in segmental tunnel linings: Numerical explanation via macro-level structural modeling", Tunn. Undergr. Sp. Tech., 120, 104284. https://doi.org/10.1016/j.tust.2021.104284.
- Luttikholt, A. (2007), "Ultimate limit state analysis of a segmented tunnel lining - Results of Full-scale Tests Compared to Finite Element Analysis", Master thesis, Delft University of Technology (TU Delft), Delft.
- Molins, C. and Arnau, O. (2011), "Experimental and analytical study of the structural response of segmental tunnel linings based on an in situ loading test: Part 1: Test configuration and execution", Tunn. Undergr. Sp. Tech., 26(6), 764-777. https://doi.org/10.1016/j.tust.2011.05.002.
- Nematollahi, M., Molladavoodi, H. and Dias, D. (2018), "Three-dimensional numerical simulation of the Shiraz subway second line-influence of the segmental joints geometry and of the lagging distance between twin tunnels' faces", Eur. J. Environ. Civ. Eng., 24(10), 1606-1622. https://doi.org/10.1080/19648189.2018.1476270.
- Nematollahi, M. and Dias, D. (2019), "Three-dimensional numerical simulation of pile-twin tunnels interaction - Case of the Shiraz subway line", Tunn. Undergr. Sp. Tech., 86, 75-88. https://doi.org/10.1016/j.tust.2018.12.002.
- Ramesh, A., Hajihassani, M. and Rashiddel, A. (2020), "Ground movements prediction in shield-driven tunnels using gene expression programming", Open Constr. Build. Technol. J., 14, 286-297. https://doi.org/10.2174/1874836802014010286.
- Ramsheh, F.A., Rashiddel, A. and Dias, D. (2021), "3D numerical simulations of tunneling induced soil deformations", J. Phys. Conference Series, 1973(1), 012207. https://doi:10.1088/1742-6596/1973/1/012207.
- Rashiddel, A., Kharghani, M., Dias, D. and Hajihassani, M. (2020), "Numerical study of the segmental tunnel lining behavior under a surface explosion - Impact of the longitudinal joints shape", Comput. Geotech., 128, 103822. https://doi.org/10.1016/j.compgeo.2020.103822.
- Rezaei, A.H., Shirzehhagh, M. and Golpasand, M.R.B. (2019), "EPB tunneling in cohesionless soils: A study on Tabriz Metro settlements", Geomech. Eng., 19(2), 153-165. https://doi.org/10.12989/gae.2019.19.2.153.
- Sedarat, H., Kozak, A., Hashash, Y.M.A., Shamsabadi, A. and Krimotat, A. (2009), "Contact interface in seismic analysis of circular tunnels", Tunn. Undergr. Sp. Tech., 24(4), 482-490. https://doi.org/10.1016/j.tust.2008.11.002.
- Stiros, S. and Kontogianni, V. (2009), "Mean deformation tensor and mean deformation ellipse of an excavated tunnel section", Int. J. Rock Mech. Min. Sci., 46(8), 1306-1314. https://doi.org/10.1016/j.ijrmms.2009.02.013.
- Plizzari, G.A. and Tiberti, G. (2006), "Steel fibers as reinforcement for precast tunnel segments", Tunn. Undergr. Sp. Tech., 21(3), 438-439. https://doi.org/10.1016/j.tust.2005.12.079.
- Teachavorasinskun, S. and Chub-uppakarn, T. (2010), "Influence of segmental joints on tunnel lining", Tunn. Undergr. Sp. Tech., 25(4), 490-494. https://doi.org/10.1016/j.tust.2010.02.003.
- Vigle, L. (2001), "Design, Manufacturing and Application of Tunnel Segments", International Training course, Sargans, Switzerland.
- Van der Vliet, C. (2006), "Langsvoeggedrag op basis van de elasticiteitstheorie, Een aanscherping van de janssen-relatie", Bouwdienst Rijkswaterstaat.
- Wang, F.Y., Zhou, M.L., Zhang, D.M., Huang, H.W. and Chapman, D. (2019), "Random evolution of multiple cracks and associated mechanical behaviors of segmental tunnel linings using a multiscale modeling method", Tunn. Undergr. Sp. Tech., 90, 220-230. https://doi.org/10.1016/j.tust.2019.05.008.
- Wood, A.M. (1975), "The circular tunnel in elastic ground", Geotechnique, 25(1), 115-127. https://doi.org/10.1680/geot.1975.25.1.115.
- Xue, Y., Li, X., Qiu, D., Ma, X., Kong, F., Qu, C. and Zhao, Y. (2019), "Stability evaluation for the excavation face of shield tunnel across the Yangtze River by multi-factor analysis", Geomech. Eng., 19(3), 283-293. http://doi.org/10.12989/gae.2019.19.3.283.
- Yanzhi, Y., Weiwei, Z., Jianwei, W. and Zhihao, Y. (2014), "Three-dimensional orthotropic equivalent modelling method of large-scale circular jointed lining", Tunn. Undergr. Spa. Tech., 44, 33-41. https://doi.org/10.1016/j.tust.2014.07.002.
- Yu, H., Cai, C., Bobet, A., Zhao, X. and Yuan, Y. (2019), "Analytical solution for longitudinal bending stiffness of shield tunnels", Tunn. Undergr. Spa. Tech., 83, 27-34. https://doi.org/10.1016/j.tust.2018.09.011.
- Zaheri, M., Ranjbarnia, M. and Dias, D. (2020), "3D numerical investigation of segmental tunnels performance crossing a dip-slip fault", Geomech. Eng., 23(4), 351-364. https://doi.org/10.12989/gae.2020.23.4.351.
- Zhang, J.L., Schlappal, T., Yuan, Y., Mang, H.A. and Pichler, B. (2019), "The influence of interfacial joints on the structural behavior of segmental tunnel rings subjected to ground pressure", Tunn. Undergr. Sp. Tech., 84, 538-556. https://doi.org/10.1016/j.tust.2018.08.025.
- Zheng, G., Cui, T., Cheng, X., Diao, Y., Zhang, T., Sun, J. and Ge, L. (2017), "Study of the collapse mechanism of shield tunnels due to the failure of segments in sandy ground", Eng. Fail. Anal., 79, 464-490. https://doi.org/10.1016/j.engfailanal.2017.04.030.