Acknowledgement
We would like to acknowledge the financial support from the National Natural Science Foundation of China (Grant No.: 52022053; 52109129), and the China Postdoctoral Science Foundation (Grand No. s: BX2021172; 2021M691953).
References
- Aflaki, E. and Moodi, F. (2017), "Laboratory tests for studying the performance of grouted micro-fine cement", Comput. Concrete, 20(2), 145-154. http://doi.org/10.12989/cac.2017.20.2.145.
- Amadei, B. and Savage, W.Z. (2001), "An analytical solution for transient flow of Bingham viscoplastic materials in rock fractures", Int. J. Rock Mech. Min. Sci., 38(2), 285-296. https://doi.org/10.1016/S1365-1609(00)00080-0.
- Andjelkovic, V., Lazarevic, Z., Nedovic, V. and Stojanovic Z. (2013), "Application of the pressure grouting in the hydraulic tunnels", Tunn. Undergr. Sp. Tech. 37, 165-179. https://doi.org/10.1016/j.tust.2012.08.012.
- Ao, X., Wang, X., Zhu, X., Zhou, Z. and Zhang, X. (2017), "Grouting simulation and stability analysis of coal mine goaf considering hydromechanical coupling", J. Comput. Civil. Eng., 31(3), http://doi.org/10.1061/(asce)cp.1943-5487.0000640.
- Chi, Y., Sarica, C. and Daraboina, N. (2019), "Experimental investigation of two-phase gas-oil stratified flow wax deposition in pipeline", Fuel, 247, 113-125. http://doi.org/10.1016/j.fuel.2019.03.032.
- Draganovic A. and Stille H. (2014), "Filtration of cement-based grouts measured using a long slot", Tunn. Undergr. Sp. Tech., 43, 101-112. https://doi.org/10.1016/j.tust.2014.04.010.
- El Tani M. (2012), "Grouting Rock Fractures with Cement Grout", Rock. Mech. and Rock. Eng., 45(4), 547-561. http://doi.org/10.1007/s00603-012-0235-0.
- Funehag, J. and Thorn, J. (2018), "Radial penetration of cementitious grout-Laboratory verification of grout spread in a fracture model", Tunn. Undergr. Sp. Tech., 72, 228-232. https://doi.org/10.1016/j.tust.2017.11.020
- Ghafar, A.N., Mentesidis, A., Draganovic, A. and Larsson, S. (2016), "An experimental approach to the development of dynamic pressure to improve grout spread", Rock. Mech. Rock. Eng., 49(9), 3709-3721. http://doi.org/10.1007/s00603-016-1020-2.
- Ghareh, S., Kazemian, S. and Shahin, M. (2020), "Assessment of compressibility behavior of organic soil improved by chemical grouting: An experimental and microstructural study", Geomech. Eng., 21(4), 337-348. http://doi.org/10.12989/gae.2020.21.4.337.
- Gullu, H. (2017), "A novel approach to prediction of rheological characteristics of jet grout cement mixtures via genetic expression programming", Neural Comput. Appl., 28(1), 407-420. https://doi.org/10.1007/s00521-016-2360-2.
- Gustafson, G., Claesson, J. and Fransson, A. (2013), "Steering parameters for rock grouting", J. Appl. Math., 2013(1), 1-9. https://doi.org/10.1155/2013/269594.
- Hao, M., Wang, F., Li, X., Zhang, B. and Zhong, Y. (2018), "Numerical and Experimental Studies of Diffusion Law of Grouting with Expansible Polymer", J. Mater. Civ. Eng., 30(2), http://doi.org/10.1061/(asce)mt.1943-5533.0002130.
- Huang, S., Pei, Q., Ding, X., Zhang, Y., Liu, D., He, J. and Bian, K. (2020), "Grouting diffusion mechanism in an oblique crack in rock masses considering temporal and spatial variation of viscosity of fast-curing grouts", Geomech. Eng., 23(2), 151-163. http://doi.org/10.12989/gae.2020.23.2.151
- Ismail, A.S.I., Ismail, I., Zoveidavianpoor, M., Mohsin, R., Piroozian, A. and Misnan, M.S. (2015), "Experimental investigation of oil-water two-phase flow in horizontal pipes: Pressure losses, liquid holdup and flow patterns", J. Petrol. Sci. Eng., 127, 409-420. http://doi.org/10.1016/j.petrol.2015.01.038.
- Kaushal, D.R., Thinglas, T., Tomita, Y., Kuchii, S. and Tsukamoto, H. (2012), "CFD modeling for pipeline flow of fine particles at high concentration", Int. J. Multiphas. Fl., 43, 85-100. http://doi.org/10.1016/j.ijmultiphaseflow.2012.03.005.
- Kim, Y. and Moon, J. (2020), "Change of groundwater inflow by cutoff grouting thickness and permeability coefficient", Geomech. Eng., 21(2), 165-170. http://doi.org/10.12989/gae.2020.21.2.165
- Lee, C.H., Low, Y.M. and Chiew Y.M. (2016), "Multi-dimensional rheology-based two-phase model for sediment transport and applications to sheet flow and pipeline scour", Phys. Fluids, 28(5), http://doi.org/10.1063/1.4948987.
- Li, H. (2018), "Study on Plugging Mechanism and Technology of Large-flow Karst Pipe Water Gushing", Ph.D. Dissertation; Shandong University, Jinan, China.
- Li, S., Han, W., Zhang, Q., Liu, R. and Weng, X. (2013), "Research on Time-dependent Behavior of Viscosity of Fast Curing Grouts in Underground Construction Grouting", Chinese J. Rock. Mech. Eng., 32(1), 1-7. http://doi.org/10.1016/0006-8993(92)90961-8.
- Li, S., Pan, D., Xu, Z., Lin, P. and Zhang, Y. (2020), "Numerical simulation of dynamic water grouting using quick-setting slurry in rock fracture: the Sequential Diffusion and Solidification (SDS) method", Comput. Geotech., 122, http://doi.org/10.1016/j.compgeo.2020.103497.
- Liu, B., Sang, H., Liu, Q., Kang, Y., Pan, Y. and Lu, C. (2020), "New Algorithm for Simulating Grout Diffusion and Migration in Fractured Rock Masses", Int. J. Geomech., 20(3), http://doi.org/10.1061/(asce)gm.1943-5622.0001537.
- Magnini, M. and Matar, O.K. (2019), "Fundamental study of wax deposition in crude oil flows in a pipeline via interface-resolved numerical simulations", Ind. Eng. Chem. Res., 58(47), 21797-21816. http://doi.org/10.1021/acs.iecr.9b05250.
- Nadimi, S. and Shahriar, K. (2014), "Experimental creep tests and prediction of long-term creep behavior of grouting material", Arabian J. Geosci. 7(8), 3251-3257. https://doi.org/10.1007/s12517-013-0920-7.
- Minto, J.M., MacLachlan E., El Mountassir G. and Lunn R. J. (2016), "Rock fracture grouting with microbially induced carbonate precipitation", Water. Resour. Res., 52(11), 8827-8844. https://doi.org/10.1002/2016WR018884.
- Mohajerani, S., Baghbanan, A., Bagherpour, R. and Hashemolhosseini, H. (2015), "Grout penetration in fractured rock mass using a new developed explicit algorithm", Int. J. Rock. Mech. Min., 80, 412-417. http://doi.org/10.1016/j.ijrmms.2015.06.013.
- Mohammed, M.H., Pusch, R., Knutsson, S. and Hellstr, G. (2014), "Rheological properties of cement-based grouts determined by different techniques", Engineering, 6, http://doi.org/10.4236/eng.2014.65026.
- Mu, W., Li, L., Yang, T., Yu, G. and Han, Y. (2019), "Numerical investigation on a grouting mechanism with slurry-rock coupling and shear displacement in a single rough fracture", B. Eng. Geo. Environ., 78(8), 6159-6177. http://doi.org/10.1007/s10064-019-01535-w.
- Puay, H.T. and Hosoda, T. (2016), "Mathematical modeling of the injection of grout into a horizontal slot", Int. J. Geomech. 16(4), https://doi.org/10.1061/(ASCE)GM.1943-5622.0000566.
- Rahman, M., Hakansson, U. and Wiklund, J. (2015), "In-line rheological measurements of cement grouts: Effects of water/cement ratio and hydration", Tunn. Undergr. Sp. Tech., 45, 34-42. http://doi.org/10.1016/j.tust.2014.09.003.
- Sharpe, C.J. (1990), "Experimental effectiveness of rock fracture grouting", Ph.D. Dissertation; The University of Arizona, Tucson.
- Stille, H., Gustafson, G. and Hassler, L. (2012), "Application of New Theories and Technology for Grouting of Dams and Foundations on Rock", Geotech. Geol. Eng., 30(3), 603-624. http://doi.org/10.1007/s10706-012-9512-7.
- Sui, W., Liu, J., Hu, W., Qi, J. and Zhan, K. (2015), "Experimental investigation on sealing efficiency of chemical grouting in rock fracture with flowing water", Tunn. Undergr. Sp. Tech., 50, 239-249. http://doi.org/10.1016/j.tust.2015.07.012.
- Wang, Y.H., Yang, P., Li, Z.T., Wu, S.J. and Zhao, Z.X. (2020), "Experimental-numerical investigation on grout diffusion and washout in rough rock fractures under flowing water", Comput. Geotech., 126, http://doi.org/10.1016/j.compgeo.2020.103717.
- Xu, Z., Shi, H., Lin, P. and Liu, T. (2021a), "Integrated lithology identification based on images and elemental data from rocks", J. Petrol. Sci. Eng., 205, 108853. https://doi.org/10.1016/j.petrol.2021.108853.
- Xu, Z.H., Wang, W.Y., Lin, P., Nie, L.C., Wu, J. and Li, Z.M. (2021b), "Hard-rock TBM jamming subject to adverse geological conditions: Influencing factor, hazard mode and a case study of Gaoligongshan Tunnel", Tunn. Undergr. Sp. Tech., 108, 103683. https://doi.org/10.1016/j.tust.2020.103683.
- Xu, Z., Lin, P., Xing, H., Pan, D. and Huang, X. (2021c), "Hydro-mechanical coupling response behaviors in tunnel subjected to a water-filled karst cave", Rock Mech. Rock Eng., 54(8), 3737-3756. https://doi.org/10.1007/s00603-021-02423-0.
- Xu, Z., Pan, D., Lin, P., Zhang, Q., Li, H. and Zhang, Y. (2021d), "Numerical investigation of flow control technology for grouting and blocking of flowing water in karst conduits", Int. J. Numer. Anal. Met., 45(12), 1712-1738. https://doi.org/10.1002/nag.3221.
- Xu, Z., Pan, D., Li, S., Zhang, Y., Bu, Z. and Liu, J. (2022), "A grouting simulation method for quick-setting slurry in karst conduit: The sequential flow and solidification method", J. Rock Mech. Geotech., https://doi.org/10.1016/j.jrmge.2021.11.006.
- Yang, P., Liu, Y., Gao, S. and Xue, S. (2020), "Experimental investigation on the diffusion of carbon fibre composite grouts in rough fractures with flowing water", Tunn. Undergr. Sp. Tech., 95, http://doi.org/10.1016/j.tust.2019.103146.
- Zou, L., Hakansson, U. and Cvetkovic, V. (2018), "Two-phase cement grout propagation in homogeneous water-saturated rock fractures", Int. J. Rock. Mech. Min., 106, 243-249. http://doi.org/10.1016/j.ijrmms.2018.04.017.
- Zou, L., Jing, L. and Cvetkovic, V. (2017), "Modeling of flow and mixing in 3D rough-walled rock fracture intersections", Adv. Water. Resour., 107, 1-9. http://doi.org/10.1016/j.advwatres.2017.06.003.