
East Asian Math. J.

Vol. 38 (2022), No. 3, pp. 321–329

http://dx.doi.org/10.7858/eamj.2022.019

FLEXIBILITY OF AFFINE CONES OVER SINGULAR DEL

PEZZO SURFACES WITH DEGREE 4

Joonyeong Won

Abstract. For an ample divisor A of birational type on a singular del

Pezzo surface S of degree 4 with A1-singularity, we show that the affine

cone of S defined by A is flexible

All considered varieties are assumed to be algebraic and defined over an
algebraically closed field of characteristic 0 throughout this article.

1. Introduction

An affine algebraic variety X is called flexible if the tangent space of X at any
smooth point is spanned by the tangent vectors to the orbits of one-parameter
unipotent group actions [1].

For a positive integer m, a group G is called to act m-transitively on a set
X if the action is transitive on m-tuples of distinct points of X. In addition, an
action is called infinitely transitive on X if the action is m-transitive for each
integer m > 0. For an algebraic variety X, the subgroup of Aut(X) generated
by all algebraic one parameter unipotent subgroups of Aut(X) is denoted by
SAut(X) . The group SAut(X) is called the special automorphism group of
X. The following theorem from [1] shows the relations between flexibility and
infinite transitivity.

It is well known that any effective action of one-dimensional unipotent group
Ga = Ga(K) on X defines a locally nilpotent derivation δ ∈ LND(K[X]) of
the algebra of regular functions on X. All such actions generate a subgroup of
special automorphisms SAutX ⊂ AutX.

Theorem 1 ([1, Theorem 0.1]). Let X be an affine algebraic variety of dimen-
sion ≥ 2. Then the following conditions are equivalent:

(1) The variety X is flexible;
(2) the group SAutX acts transitively on X;
(3) the group SAutX acts infinitely transitively on X.
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Three classes of flexible affine varieties are showed in [2],that is, affine cones
over flag varieties, non-degenerate toric varieties of dimension ≥ 2, and suspen-
sions over flexible varieties. For example, affine cones over del Pezzo varieties
of degree ≥ 6 are toric, thus they are flexible. In addition, [1] proves that any
flexible variety is unirational. On the other hand, in [3], it is conjectured that
any unirational variety is stably birational to an infinitely transitive variety and
is proved in some cases.

In this paper we consider affine cones over singular del Pezzo surfaces with A1

singularity polarized by ample divisors. For smooth del Pezzo surfaces of degrees
at most 3, the non-existence of Ga-actions on affine cones by their anticanonical
divisors was proved in [4], [10]. In [5], the existence and non-existence of Ga-
actions on affine cones over anticanonically polarized del Pezzo surfaces with du
Val singularities were fully classified according to their singularities and degrees.

In [13], [14] it is also shown that affine cones over the smooth del Pezzo
surface of degree 4 and 5 polarized by arbitrary ample divisors are flexible.

Theorem 2. Let S be a smooth del Pezzo surface of degree at least 4. For any
ample divisor H, the affine cone

AffconeH(S) = Spec

∞⊕
m=0

H0(S,O(mH))

is flexible.

Therefore, it is natural to extend the flexibility problem to del Pezzo surfaces
with mild singularity. As a first step to the direction of the problem, we prove
the following

Main Theorem 1. Let S be a singular del Pezzo surface of degree 4 with A1

singularity. For an ample divisor H of birational type on S, the affine cone
AffconeH(S) is flexible.

2. Cylinders, flexibility of affine cones

Let Y be a projective variety and H be a very ample divisor on Y . A
polarization of (Y,H) provides an embedding Y ↪→ Pn. Consider an affine cone
X = AffConeH Y ⊂ An+1 with vertex at the origin 0 ∈ An+1 corresponding to
this embedding.

Definition 3. An open subset U of a variety Y is called a cylinder if U ∼= Z×A1,
where Z is a smooth variety with PicZ = 0. Given a divisor H ⊂ Y , we say
that a cylinder U is H-polar if U = Y \ suppD for some effective divisor D
which is Q-eqivalent to H.

Definition 4. We call a subset W ⊂ Y invariant with respect to a cylinder
U = Z × A1 if W ∩ U = π−11 (π1(W )), where π1 : U → Z is the first projection
of the direct product. In other words, every A1-fiber of the cylinder is either
contained in W or does not meet W .
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Definition 5. We say that a variety Y is transversally covered by cylinders Ui,
i = 1, . . . , s, if Y =

⋃
Ui and there is no proper subset W ⊂ Y invariant with

respect to all Ui.

Clearly, any cylinder Ui is smooth. Thus, a singular variety Y does not admit
a transversal covering by cylinders. But if a singular variety Y can be covered
by transversal cylinders except for singular points.

Theorem 6. The affine cone AffconeH(Y ) admits an effective Ga-action if and
only if Y contains an H -polar cylinder

Theorem 7. If Ysmooth has a transversal covering by H-polar cylinders , then
the affine cone AffconeH(Y )is flexible.

Corollary 8. Let Y be a singular del Pezzo surface with A1 singularity, Then we
have minimal resolution Z → Y , where Z is weak del Pezzo surface. Then if Z
has a transversal covering by H-polar cylinders, then the affine cone AffconeH(Y )is
flexible.

3. Ample divisors on weak del Pezzo surface of degree 4

From now on, the divisor A is always assumed to be ample, unless otherwise
stated. The following method to express the divisor A in terms of −KS and
(−1)-curves is adopted from [6], [14]. For the log pair (S,A), we define an
invariant of (S,A) by

µ := inf
{
λ ∈ Q>0

∣∣∣ the Q-divisor KS + λA is pseudo-effective
}
.

The invariant µ is always obtained by a positive rational number. Let ∆(S,A)

be the smallest extremal face of the boundary of the Mori cone NE(S) that
contains KS + µA.

Let φ : S → Z be the contraction given by the face ∆(S,A). Then either φ is a

birational morphism or a conic bundle with Z ∼= P1. In the former case ∆(S,A)

is generated by r disjoint (−1)-curves contracted by φ, where r ≤ 8. In the later
case, ∆(S,A) is generated by the (−1)-curves in the eight reducible fibers of φ.
Each reducible fiber consists of two (−1)-curves that intersect transversally at
one point.

Suppose that φ is birational. Let E1, . . . , Er be all (−1)-curves contained in
∆(S,A). These are disjoint and generate the face ∆(S,A). Therefore,

KS + µA ∼Q

r∑
i=1

aiEi

for some positive rational numbers a1, . . . , ar. We have ai < 1 for every i because
A · Ei > 0. Vice versa, for every positive rational numbers a1, . . . , ar < 1, the
divisor

−KS +

r∑
i=1

aiEi
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is ample.
Suppose that φ is a conic bundle. Then there are a 0-curve B and seven

disjoint (−1)-curves E1, E2, E3, E4, E5, E6, E7, each of which is contained in a
distinct fiber of φ, such that

KS + µA ∼Q aB +

7∑
i=1

aiEi

for some positive rational number a and non-negative rational numbers a1, a2,
a3, a4, a5, a6, a7 < 1. In particular, these curves generate the face ∆(S,A). Vice
versa, for every positive rational number a and non-negative rational numbers
a1, a2, a3, a4, a5, a6, a7 < 1 the divisor

−KS + aB +

7∑
i=1

aiEi

is ample.
The followings describe the notations that we will use in the rest of the

present paper. Unless otherwise mentioned, these notations are fixed from now
until the end of the paper.

Let p1, p2, p3, p4 and p5 be points of P2 in almost general position. We obtain
a general del Pezzo surface S with degree 4 by the blow-up π of pi, i = 1, . . . , 5.
It is a sequence of surfaces

P2 = S0 ← S1 ← · · · ← S5 = S

where each Si is the blow-up πi of Si−1 at pi, i = 1, . . . 5. Then there are the
exceptional divisors Ei with πi(Ei) = pi.

In this situation we consider the case that π5(E5) ∈ E4.
Let lij be lines in P2 passing through pi and pj where i 6= j. Then for the

birational morphism π the strict transform Lij of lij is a (−1)-curve.
Let T1 be the surface given by the contraction φ1 of the curves L23, L24, L34

and E1. Next, the contraction ψ1 of E5 in T1 gives a surface isomorphic to P2.
Similarly, we can find T2 and T3.

4. Proof of Main Theorem

4.1. Construction of cylinder

We set q1 = φ1(E1), e2 = φ1(E2), e3 = φ1(E3) and e4 = φ1(E4). And we set
qij = ei ∩ ej with i 6= j. We consider the line m13 passing through q24 and q1.
Then m13 = φ1(L13). In this situation

P2 \ (ψ1(m13 ∪ e3))

is the cylinder that is isomorphic to A1
∗ × A1. Thus

U13 =: S \ (E1 ∪ E3 ∪ L13 ∪ L23 ∪ L24 ∪ L34 ∪ C31)
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is the cylinder of S that is isomorphic to A1
∗ × A1 where ψ1 ◦ φ1(C31) is the

line passing through ψ1(m13 ∩ e3) and ψ1(E5). Similarly we can construct the
following cylinders.

U12 =: S \ (E1 ∪ E2 ∪ L12 ∪ L23 ∪ L24 ∪ L34 ∪ C21),

U23 =: S \ (E2 ∪ E3 ∪ L23 ∪ L13 ∪ L14 ∪ L34 ∪ C32),

U21 =: S \ (E2 ∪ E1 ∪ L12 ∪ L13 ∪ L14 ∪ L34 ∪ C12),

U32 =: S \ (E3 ∪ E2 ∪ L23 ∪ L12 ∪ L14 ∪ L24 ∪ C23),

U31 =: S \ (E3 ∪ E1 ∪ L13 ∪ L12 ∪ L14 ∪ L24 ∪ C13).

It is easy to see that

S \ (U13 ∪ U12 ∪ U23 ∪ U21 ∪ U32 ∪ U31)

is the set R of L34 ∩L12, L13 ∩L24, L24 ∩L13, L14 ∩E1, L24 ∩E2 and L34 ∩E3.
Next we consider the cylinder given by

P2 \ (l14 ∪ l23)

that is isomorphic to A1
∗ × A1. Then

V1 = S \ (L14 ∪ L23 ∪ E1 ∪ · · · ∪ E5)

is the cylinder of S that is isomorphic to A1
∗ × A1. Similarly we can find the

following cylinder

V2 = S \ (L13 ∪ L24 ∪ E1 ∪ · · · ∪ E5).

It is easy to see that V1 ∪ V2 contains R. Therefore S is covers by the above
cylinders.

4.2. On the -1-curve E4

In this section we consider E4. We set p = L23 ∩ L45 = l23 ∩ l45. Let l1p
be the line in P2 passing through the two points p1 and p. Let A be an ample
divisor of S. For the Fujita invariant µ of A we have the following.

µA ∼Q 3e0 + (a1 − 1)E1 + · · ·+ (a4 − 1)E4 + (a5 − 2)E5

where e0 is the pullback of the class of lines in P2 and ai are positive rational
numbers. For

(1− a4)π∗(l45) = (1− a4)(L45 + E4 + 2E5),

2 + a4
2

π∗(l23) =
2 + a4

2
(L23 + E2 + E3),

2 + a4
2

π∗(l1p) =
2 + a4

2
(L1p + E1)

we have

µA ∼Q (1−a4)π∗(l45)+
2 + a4

2
(π∗(l23)+π∗(l1p))+(a1−1)E1 + · · ·+(a5−2)E5

= (1− a4)L45 +
2 + a4

2
(L23 + L1p)+
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µA ∼Q (1− a4)L45 +
2 + a4

2
(L23 + L1p)

+(a1 +
a4
2

)E1 + (a2 +
a4
2

)E2 + (a3 +
a4
2

)E3 + (a5 − 2a4)E5

Thus there is a divisor D such that D ∼Q A and Supp(D) = L45 ∪ L23 ∪
L1p ∪ E1 ∪ E2 ∪ E3 ∪ E5.

We can see that S \ Supp(D) ∼= A1 × A1
∗∗.

Therefore, the curve E4 must contract.

4.3. Almost general positions

In this section we consider the case that a weak del Pezzo surface X of degree
4 is given by a blow-up of P2.

Let p1, p2 and p3 be colinear points in P2. Let l123 be the line passing through
the points p1, p2 and p3. And let p4 and p5 be distinct points in P2 which do
not contained in the line l123. Then p1, . . . p5 are almost general position. Let X
be the weak del Pezzo surface given by the blow-up π : X → P2 along p1, . . . p5.
Let A be an ample divisor on X related to π. Then we have

µA+KX ≡
5∑

i=1

aiEi

where µ is the Fujita invariant of A, ai is positive real number and Ei are
exceptional curve with π(Ei) = pi. It is easy to see that ai < 1. Then we have

µA ≡ −KX +

5∑
i=1

aiEi.

In this situation we can construct the following cylinders.
Let l45 be the line passing through p4 and p5. And let l be a general line

passing through l123 ∩ l45. Then P2 \ l123 ∪ l45 ∪ l is the cylinder isomorphic to
A1
∗∗ × A1. Meanwhile, we have

−KP2 ≡ l123 + l45 + l.

It implies that

µA ≡ −KX +
∑5

i=1 aiEi

≡ π∗(−KP2) +
∑5

i=1(ai − 1)Ei

≡ L123 + L45 + L+
∑5

i=1 aiEi

where L∗ be the strict transform of l∗. Since U1 = X \L123 ∪L45 ∪L∪
⋃5

i=1Ei

is isomorphic to P2 \ l123 ∪ l45 ∪ l, it is an A-polar cylinder.
Next we consider the following. Let l14 and l25 be the curves in P2 where lij

is the line passing through pi and pj . And let l3 be the curve passing through
p3 and l14 ∩ l25. Then we have

µA ≡ π∗(−KP2) +
∑5

i=1(ai − 1)Ei

≡ L14 + L25 + L3 +
∑5

i=1 aiEi.
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Thus U2 = X \ L14 ∪ L25 ∪ L3 ∪
⋃5

i=1Ei is an A-polar cylinder. Similarly we

can see that U3 = X \ L15 ∪ L24 ∪ L̄3 ∪
⋃5

i=1Ei is an A-polar cylinder where
L̄3 is the strict transform of the line passing through p3 and l15 ∪ l24. Thus we
have

X \ U1 ∪ U2 ∪ U3 =

5⋃
i=1

Ei.

Meanwhile, we consider another birational morphism ψ : X → P2 contracted
by L14, L15, L45, E2 and E3. We set ψ(L14) = q1, ψ(L15) = q2, ψ(E2) = q3,
ψ(E3) = q4 and ψ(L45) = q5. Using this morphsim we can see that X \ (E1 ∪
E2∪E3∪L123∪L14∪L15∪L45∪L) is the cylinder where L is the strict transform
of a general line passing through ψ(E1) ∩ ψ(L123). Thus we must prove that it
is an A-polar cylinder. We consider the following.

KX ≡ ψ∗(KP2) + E2 + E3 + L14 + L15 + L45.

Thus we have

µA ≡ −ψ∗(KP2)−L14−L15−L45+a1E1+(a2−1)E2+(a3−1)E3+a4E4+a5E5.

Without loss of generality we can assume that a4 ≤ a5. We have

−KP2 ≡ (1− a5 − 2ε)L+ (1 + a4 + a5 + ε)ψ(L̄123) + (1 + a5 + ε)ψ(E1)
− a4ψ(E4)− a5ψ(E5)

where ε� 1 is a positive real number. From this we obtain the following.

ψ∗(−KP2) ≡ (1− a5 − 2ε)L̄+ (1 + a4 + a5 + ε)L̄123 + (1 + a5 + ε)E1

− a4E4 − a5E5 + (1 + a4 + a5 + ε)(E2 + E3)
+ (1 + ε)L̄45 + (1 + a5 − a4 + ε)L̄14 + (1 + ε)L̄15.

It implies that

µA ≡ (1− a5 − 2ε)L̄+ (1 + a4 + a5 + ε)L̄123 + (a5 − a4 + ε)L̄14 + εL̄15

+ εL̄45 + (1 + a1 + a5 + ε)E1 + (a2 + a4 + a5 + ε)E2

+ (a3 + a4 + a5 + ε)E3

We consider the biraional morphsim φ : X → P2 given by the sequence of con-
traction

L15 → L25 → L35 → L45 → L123.

Then φ(E5) is the conic and φ(E4) is the tangent line at the point φ(L45∪L123).
Thus X \E4∪E5∪L123∪L15∪L25∪L35∪L45 is a cylinder which is isomorphic
to A1

∗×A1. Thus we have to see that it is A-polar cylinder. Using the biraional
morphism φ we have

KX ≡ φ∗(KP2) + L15 + L25 + L35 + L123 + 2L45.

Then we have

µA ≡ φ∗(−KP2)− L15 − L25 − L35 − L123 − 2L45 +

5∑
i=1

aiEi.
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Meanwhile we have

−a1φ∗(e1) = −a1(E1 + L123 + 2L45 + L15),

−a2φ∗(e2) = −a2(E2 + L123 + 2L45 + L25),

−a3φ∗(e3) = −a3(E3 + L123 + 2L45 + L35).

They imply that

µA ≡ (3 + a1 + a2 + a3)e0 − (1 + a1)L15 − (1 + a2)L25 − (1 + a3)L35

− (1 + a1 + a2 + a3)L123 − 2(1 + a1 + a2 + a3)L45

+ a4E4 + a5E5

where e0 is the pullback of the class of line in P2. Without loss of generality we
can assume that a1 ≤ a2 ≤ a3. We have

(1 + a3 + ε)φ∗(e5) = (1 + a3 + ε)(E5 + L15 + L25 + L35 + L123 + 2L45),

(1 + a1 + a2 − a3 − 2ε)φ∗(e4) = (1 + a1 + a2 − a3 − 2ε)(E4 + L123 + 2L45).

Then

µA ≡ (1 + a3 + a4 + ε)E5 + (1 + a1 + a2 − a3 + a5 − 2ε)E4

+ (a3 − a1 + ε)L15 + (a3 − a2 + ε)L25 + εL35

− (1− a3 − ε)L123 − 2(1− a3 − ε)L45.
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