East Asian Math. J.
Vol. 38 (2022), No. 3, pp. 321-329
YNMS
http://dx.doi.org/10.7858/eamj.2022.019

FLEXIBILITY OF AFFINE CONES OVER SINGULAR DEL PEZZO SURFACES WITH DEGREE 4

Joonyeong Won

Abstract

For an ample divisor A of birational type on a singular del Pezzo surface S of degree 4 with A_{1}-singularity, we show that the affine cone of S defined by A is flexible

All considered varieties are assumed to be algebraic and defined over an algebraically closed field of characteristic 0 throughout this article.

1. Introduction

An affine algebraic variety X is called flexible if the tangent space of X at any smooth point is spanned by the tangent vectors to the orbits of one-parameter unipotent group actions [1].

For a positive integer m, a group G is called to act m-transitively on a set X if the action is transitive on m-tuples of distinct points of X . In addition, an action is called infinitely transitive on X if the action is m-transitive for each integer $m>0$. For an algebraic variety X, the subgroup of $\operatorname{Aut}(X)$ generated by all algebraic one parameter unipotent subgroups of $\operatorname{Aut}(X)$ is denoted by $\operatorname{SAut}(X)$. The group $\operatorname{SAut}(X)$ is called the special automorphism group of X. The following theorem from [1] shows the relations between flexibility and infinite transitivity.

It is well known that any effective action of one-dimensional unipotent group $\mathbb{G}_{a}=\mathbb{G}_{a}(\mathbb{K})$ on X defines a locally nilpotent derivation $\delta \in \operatorname{LND}(\mathbb{K}[X])$ of the algebra of regular functions on X. All such actions generate a subgroup of special automorphisms $\operatorname{SAut} X \subset$ Aut X.

Theorem 1 ([1, Theorem 0.1]). Let X be an affine algebraic variety of dimension ≥ 2. Then the following conditions are equivalent:
(1) The variety X is flexible;
(2) the group SAut X acts transitively on X;
(3) the group SAut X acts infinitely transitively on X.

[^0]Three classes of flexible affine varieties are showed in [2], that is, affine cones over flag varieties, non-degenerate toric varieties of dimension ≥ 2, and suspensions over flexible varieties. For example, affine cones over del Pezzo varieties of degree ≥ 6 are toric, thus they are flexible. In addition, 11 proves that any flexible variety is unirational. On the other hand, in [3], it is conjectured that any unirational variety is stably birational to an infinitely transitive variety and is proved in some cases.

In this paper we consider affine cones over singular del Pezzo surfaces with A_{1} singularity polarized by ample divisors. For smooth del Pezzo surfaces of degrees at most 3 , the non-existence of \mathbb{G}_{a}-actions on affine cones by their anticanonical divisors was proved in [4, [10]. In [5], the existence and non-existence of $\mathbb{G}_{a^{-}}$ actions on affine cones over anticanonically polarized del Pezzo surfaces with du Val singularities were fully classified according to their singularities and degrees.

In [13], 14] it is also shown that affine cones over the smooth del Pezzo surface of degree 4 and 5 polarized by arbitrary ample divisors are flexible.

Theorem 2. Let S be a smooth del Pezzo surface of degree at least 4. For any ample divisor H, the affine cone

$$
\operatorname{Affcone}_{H}(S)=\operatorname{Spec} \bigoplus_{m=0}^{\infty} H^{0}(S, \mathcal{O}(m H))
$$

is flexible.
Therefore, it is natural to extend the flexibility problem to del Pezzo surfaces with mild singularity. As a first step to the direction of the problem, we prove the following

Main Theorem 1. Let S be a singular del Pezzo surface of degree 4 with A_{1} singularity. For an ample divisor H of birational type on S, the affine cone Affcone $_{H}(S)$ is flexible.

2. Cylinders, flexibility of affine cones

Let Y be a projective variety and H be a very ample divisor on Y. A polarization of (Y, H) provides an embedding $Y \hookrightarrow \mathbb{P}^{n}$. Consider an affine cone $X=$ AffCone $_{H} Y \subset \mathbb{A}^{n+1}$ with vertex at the origin $0 \in \mathbb{A}^{n+1}$ corresponding to this embedding.
Definition 3. An open subset U of a variety Y is called a cylinder if $U \cong Z \times \mathbb{A}^{1}$, where Z is a smooth variety with $\operatorname{Pic} Z=0$. Given a divisor $H \subset Y$, we say that a cylinder U is H-polar if $U=Y \backslash \operatorname{supp} D$ for some effective divisor D which is \mathbb{Q}-eqivalent to H.
Definition 4. We call a subset $W \subset Y$ invariant with respect to a cylinder $U=Z \times \mathbb{A}^{1}$ if $W \cap U=\pi_{1}^{-1}\left(\pi_{1}(W)\right)$, where $\pi_{1}: U \rightarrow Z$ is the first projection of the direct product. In other words, every \mathbb{A}^{1}-fiber of the cylinder is either contained in W or does not meet W.

Definition 5. We say that a variety Y is transversally covered by cylinders U_{i}, $i=1, \ldots, s$, if $Y=\bigcup U_{i}$ and there is no proper subset $W \subset Y$ invariant with respect to all U_{i}.

Clearly, any cylinder U_{i} is smooth. Thus, a singular variety Y does not admit a transversal covering by cylinders. But if a singular variety Y can be covered by transversal cylinders except for singular points.

Theorem 6. The affine cone Affcone $_{H}(Y)$ admits an effective \mathbb{G}_{a}-action if and only if Y contains an H-polar cylinder

Theorem 7. If $Y_{\text {smooth }}$ has a transversal covering by H-polar cylinders, then the affine cone Affcone ${ }_{H}(Y)$ is flexible.

Corollary 8. Let Y be a singular del Pezzo surface with A_{1} singularity, Then we have minimal resolution $Z \rightarrow Y$, where Z is weak del Pezzo surface. Then if Z has a transversal covering by H-polar cylinders, then the affine cone Affcone $_{H}(Y)$ is flexible.

3. Ample divisors on weak del Pezzo surface of degree 4

From now on, the divisor A is always assumed to be ample, unless otherwise stated. The following method to express the divisor A in terms of $-K_{S}$ and (-1)-curves is adopted from [6], 14]. For the \log pair (S, A), we define an invariant of (S, A) by

$$
\mu:=\inf \left\{\lambda \in \mathbb{Q}_{>0} \mid \text { the } \mathbb{Q} \text {-divisor } K_{S}+\lambda A \text { is pseudo-effective }\right\} .
$$

The invariant μ is always obtained by a positive rational number. Let $\Delta_{(S, A)}$ be the smallest extremal face of the boundary of the Mori cone $\overline{\mathrm{NE}}(S)$ that contains $K_{S}+\mu A$.

Let $\phi: S \rightarrow Z$ be the contraction given by the face $\Delta_{(S, A)}$. Then either ϕ is a birational morphism or a conic bundle with $Z \cong \mathbb{P}^{1}$. In the former case $\Delta_{(S, A)}$ is generated by r disjoint (-1)-curves contracted by ϕ, where $r \leq 8$. In the later case, $\Delta_{(S, A)}$ is generated by the (-1)-curves in the eight reducible fibers of ϕ. Each reducible fiber consists of two (-1)-curves that intersect transversally at one point.

Suppose that ϕ is birational. Let E_{1}, \ldots, E_{r} be all (-1)-curves contained in $\Delta_{(S, A)}$. These are disjoint and generate the face $\Delta_{(S, A)}$. Therefore,

$$
K_{S}+\mu A \sim_{\mathbb{Q}} \sum_{i=1}^{r} a_{i} E_{i}
$$

for some positive rational numbers a_{1}, \ldots, a_{r}. We have $a_{i}<1$ for every i because $A \cdot E_{i}>0$. Vice versa, for every positive rational numbers $a_{1}, \ldots, a_{r}<1$, the divisor

$$
-K_{S}+\sum_{i=1}^{r} a_{i} E_{i}
$$

is ample.
Suppose that ϕ is a conic bundle. Then there are a 0 -curve B and seven disjoint (-1)-curves $E_{1}, E_{2}, E_{3}, E_{4}, E_{5}, E_{6}, E_{7}$, each of which is contained in a distinct fiber of ϕ, such that

$$
K_{S}+\mu A \sim_{\mathbb{Q}} a B+\sum_{i=1}^{7} a_{i} E_{i}
$$

for some positive rational number a and non-negative rational numbers a_{1}, a_{2}, $a_{3}, a_{4}, a_{5}, a_{6}, a_{7}<1$. In particular, these curves generate the face $\Delta_{(S, A)}$. Vice versa, for every positive rational number a and non-negative rational numbers $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}<1$ the divisor

$$
-K_{S}+a B+\sum_{i=1}^{7} a_{i} E_{i}
$$

is ample.
The followings describe the notations that we will use in the rest of the present paper. Unless otherwise mentioned, these notations are fixed from now until the end of the paper.

Let $p_{1}, p_{2}, p_{3}, p_{4}$ and p_{5} be points of \mathbb{P}^{2} in almost general position. We obtain a general del Pezzo surface S with degree 4 by the blow-up π of $\mathrm{p}_{i}, i=1, \ldots, 5$. It is a sequence of surfaces

$$
\mathbb{P}^{2}=S_{0} \leftarrow S_{1} \leftarrow \cdots \leftarrow S_{5}=S
$$

where each S_{i} is the blow-up π_{i} of S_{i-1} at $\mathrm{p}_{i}, i=1, \ldots 5$. Then there are the exceptional divisors E_{i} with $\pi_{i}\left(E_{i}\right)=\mathrm{p}_{i}$.

In this situation we consider the case that $\pi_{5}\left(E_{5}\right) \in E_{4}$.
Let $l_{i j}$ be lines in \mathbb{P}^{2} passing through p_{i} and p_{j} where $i \neq j$. Then for the birational morphism π the strict transform $L_{i j}$ of $l_{i j}$ is a (-1)-curve.

Let T_{1} be the surface given by the contraction ϕ_{1} of the curves L_{23}, L_{24}, L_{34} and E_{1}. Next, the contraction ψ_{1} of E_{5} in T_{1} gives a surface isomorphic to \mathbb{P}^{2}. Similarly, we can find T_{2} and T_{3}.

4. Proof of Main Theorem

4.1. Construction of cylinder

We set $\mathrm{q}_{1}=\phi_{1}\left(E_{1}\right), e_{2}=\phi_{1}\left(E_{2}\right), e_{3}=\phi_{1}\left(E_{3}\right)$ and $e_{4}=\phi_{1}\left(E_{4}\right)$. And we set $\mathrm{q}_{i j}=e_{i} \cap e_{j}$ with $i \neq j$. We consider the line m_{13} passing through q_{24} and q_{1}. Then $m_{13}=\phi_{1}\left(L_{13}\right)$. In this situation

$$
\mathbb{P}^{2} \backslash\left(\psi_{1}\left(m_{13} \cup e_{3}\right)\right)
$$

is the cylinder that is isomorphic to $\mathbb{A}_{*}^{1} \times \mathbb{A}^{1}$. Thus

$$
U_{13}=: S \backslash\left(E_{1} \cup E_{3} \cup L_{13} \cup L_{23} \cup L_{24} \cup L_{34} \cup C_{31}\right)
$$

is the cylinder of S that is isomorphic to $\mathbb{A}_{*}^{1} \times \mathbb{A}^{1}$ where $\psi_{1} \circ \phi_{1}\left(C_{31}\right)$ is the line passing through $\psi_{1}\left(m_{13} \cap e_{3}\right)$ and $\psi_{1}\left(E_{5}\right)$. Similarly we can construct the following cylinders.

$$
\begin{aligned}
& U_{12}=: S \backslash\left(E_{1} \cup E_{2} \cup L_{12} \cup L_{23} \cup L_{24} \cup L_{34} \cup C_{21}\right), \\
& U_{23}=: S \backslash\left(E_{2} \cup E_{3} \cup L_{23} \cup L_{13} \cup L_{14} \cup L_{34} \cup C_{32}\right), \\
& U_{21}=: S \backslash\left(E_{2} \cup E_{1} \cup L_{12} \cup L_{13} \cup L_{14} \cup L_{34} \cup C_{12}\right), \\
& U_{32}=: S \backslash\left(E_{3} \cup E_{2} \cup L_{23} \cup L_{12} \cup L_{14} \cup L_{24} \cup C_{23}\right), \\
& U_{31}=: S \backslash\left(E_{3} \cup E_{1} \cup L_{13} \cup L_{12} \cup L_{14} \cup L_{24} \cup C_{13}\right) .
\end{aligned}
$$

It is easy to see that

$$
S \backslash\left(U_{13} \cup U_{12} \cup U_{23} \cup U_{21} \cup U_{32} \cup U_{31}\right)
$$

is the set R of $L_{34} \cap L_{12}, L_{13} \cap L_{24}, L_{24} \cap L_{13}, L_{14} \cap E_{1}, L_{24} \cap E_{2}$ and $L_{34} \cap E_{3}$.
Next we consider the cylinder given by

$$
\mathbb{P}^{2} \backslash\left(l_{14} \cup l_{23}\right)
$$

that is isomorphic to $\mathbb{A}_{*}^{1} \times \mathbb{A}^{1}$. Then

$$
V_{1}=S \backslash\left(L_{14} \cup L_{23} \cup E_{1} \cup \cdots \cup E_{5}\right)
$$

is the cylinder of S that is isomorphic to $\mathbb{A}_{*}^{1} \times \mathbb{A}^{1}$. Similarly we can find the following cylinder

$$
V_{2}=S \backslash\left(L_{13} \cup L_{24} \cup E_{1} \cup \cdots \cup E_{5}\right)
$$

It is easy to see that $V_{1} \cup V_{2}$ contains R. Therefore S is covers by the above cylinders.

4.2. On the -1-curve E_{4}

In this section we consider E_{4}. We set $\mathrm{p}=L_{23} \cap L_{45}=l_{23} \cap l_{45}$. Let $l_{1 \mathrm{p}}$ be the line in \mathbb{P}^{2} passing through the two points p_{1} and p . Let A be an ample divisor of S. For the Fujita invariant μ of A we have the following.

$$
\mu A \sim_{\mathbb{Q}} 3 e_{0}+\left(a_{1}-1\right) E_{1}+\cdots+\left(a_{4}-1\right) E_{4}+\left(a_{5}-2\right) E_{5}
$$

where e_{0} is the pullback of the class of lines in \mathbb{P}^{2} and a_{i} are positive rational numbers. For

$$
\begin{gathered}
\left(1-a_{4}\right) \pi^{*}\left(l_{45}\right)=\left(1-a_{4}\right)\left(L_{45}+E_{4}+2 E_{5}\right), \\
\frac{2+a_{4}}{2} \pi^{*}\left(l_{23}\right)=\frac{2+a_{4}}{2}\left(L_{23}+E_{2}+E_{3}\right), \\
\frac{2+a_{4}}{2} \pi^{*}\left(l_{1 \mathrm{p}}\right)=\frac{2+a_{4}}{2}\left(L_{1 \mathrm{p}}+E_{1}\right)
\end{gathered}
$$

we have

$$
\begin{aligned}
& \mu A \sim_{\mathbb{Q}}\left(1-a_{4}\right) \pi^{*}\left(l_{45}\right)+\frac{2+a_{4}}{2}\left(\pi^{*}\left(l_{23}\right)+\pi^{*}\left(l_{1 \mathrm{p}}\right)\right)+\left(a_{1}-1\right) E_{1}+\cdots+\left(a_{5}-2\right) E_{5} \\
&=\left(1-a_{4}\right) L_{45}+\frac{2+a_{4}}{2}\left(L_{23}+L_{1 \mathrm{p}}\right)+
\end{aligned}
$$

$$
\begin{gathered}
\mu A \sim_{\mathbb{Q}}\left(1-a_{4}\right) L_{45}+\frac{2+a_{4}}{2}\left(L_{23}+L_{1 \mathrm{p}}\right) \\
+\left(a_{1}+\frac{a_{4}}{2}\right) E_{1}+\left(a_{2}+\frac{a_{4}}{2}\right) E_{2}+\left(a_{3}+\frac{a_{4}}{2}\right) E_{3}+\left(a_{5}-2 a_{4}\right) E_{5}
\end{gathered}
$$

Thus there is a divisor D such that $D \sim_{\mathbb{Q}} A$ and $\operatorname{Supp}(D)=L_{45} \cup L_{23} \cup$ $L_{1 \mathrm{p}} \cup E_{1} \cup E_{2} \cup E_{3} \cup E_{5}$.

We can see that $S \backslash \operatorname{Supp}(D) \cong \mathbb{A}^{1} \times \mathbb{A}_{* *}^{1}$.
Therefore, the curve E_{4} must contract.

4.3. Almost general positions

In this section we consider the case that a weak del Pezzo surface X of degree 4 is given by a blow-up of \mathbb{P}^{2}.

Let $\mathrm{p}_{1}, \mathrm{p}_{2}$ and p_{3} be colinear points in \mathbb{P}^{2}. Let l_{123} be the line passing through the points p_{1}, p_{2} and p_{3}. And let p_{4} and p_{5} be distinct points in \mathbb{P}^{2} which do not contained in the line l_{123}. Then $\mathrm{p}_{1}, \ldots \mathrm{p}_{5}$ are almost general position. Let X be the weak del Pezzo surface given by the blow-up $\pi: X \rightarrow \mathbb{P}^{2}$ along $\mathrm{p}_{1}, \ldots \mathrm{p}_{5}$. Let A be an ample divisor on X related to π. Then we have

$$
\mu A+K_{X} \equiv \sum_{i=1}^{5} a_{i} E_{i}
$$

where μ is the Fujita invariant of A, a_{i} is positive real number and E_{i} are exceptional curve with $\pi\left(E_{i}\right)=\mathrm{p}_{i}$. It is easy to see that $a_{i}<1$. Then we have

$$
\mu A \equiv-K_{X}+\sum_{i=1}^{5} a_{i} E_{i}
$$

In this situation we can construct the following cylinders.
Let l_{45} be the line passing through p_{4} and p_{5}. And let l be a general line passing through $l_{123} \cap l_{45}$. Then $\mathbb{P}^{2} \backslash l_{123} \cup l_{45} \cup l$ is the cylinder isomorphic to $\mathbb{A}_{* *}^{1} \times \mathbb{A}^{1}$. Meanwhile, we have

$$
-K_{\mathbb{P}^{2}} \equiv l_{123}+l_{45}+l
$$

It implies that

$$
\begin{aligned}
\mu A & \equiv-K_{X}+\sum_{i=1}^{5} a_{i} E_{i} \\
& \equiv \pi^{*}\left(-K_{\mathbb{P}^{2}}\right)+\sum_{i=1}^{5}\left(a_{i}-1\right) E_{i} \\
& \equiv L_{123}+L_{45}+L+\sum_{i=1}^{5} a_{i} E_{i}
\end{aligned}
$$

where L_{*} be the strict transform of l_{*}. Since $U_{1}=X \backslash L_{123} \cup L_{45} \cup L \cup \bigcup_{i=1}^{5} E_{i}$ is isomorphic to $\mathbb{P}^{2} \backslash l_{123} \cup l_{45} \cup l$, it is an A-polar cylinder.

Next we consider the following. Let l_{14} and l_{25} be the curves in \mathbb{P}^{2} where $l_{i j}$ is the line passing through p_{i} and p_{j}. And let l_{3} be the curve passing through p_{3} and $l_{14} \cap l_{25}$. Then we have

$$
\begin{aligned}
\mu A & \equiv \pi^{*}\left(-K_{\mathbb{P}^{2}}\right)+\sum_{i=1}^{5}\left(a_{i}-1\right) E_{i} \\
& \equiv L_{14}+L_{25}+L_{3}+\sum_{i=1}^{5} a_{i} E_{i}
\end{aligned}
$$

Thus $U_{2}=X \backslash L_{14} \cup L_{25} \cup L_{3} \cup \bigcup_{i=1}^{5} E_{i}$ is an A-polar cylinder. Similarly we can see that $U_{3}=X \backslash L_{15} \cup L_{24} \cup \bar{L}_{3} \cup \bigcup_{i=1}^{5} E_{i}$ is an A-polar cylinder where \bar{L}_{3} is the strict transform of the line passing through p_{3} and $l_{15} \cup l_{24}$. Thus we have

$$
X \backslash U_{1} \cup U_{2} \cup U_{3}=\bigcup_{i=1}^{5} E_{i} .
$$

Meanwhile, we consider another birational morphism $\psi: X \rightarrow \mathbb{P}^{2}$ contracted by $L_{14}, L_{15}, L_{45}, E_{2}$ and E_{3}. We set $\psi\left(L_{14}\right)=\mathrm{q}_{1}, \psi\left(L_{15}\right)=\mathrm{q}_{2}, \psi\left(E_{2}\right)=\mathrm{q}_{3}$, $\psi\left(E_{3}\right)=\mathrm{q}_{4}$ and $\psi\left(L_{45}\right)=\mathrm{q}_{5}$. Using this morphsim we can see that $X \backslash\left(E_{1} \cup\right.$ $\left.E_{2} \cup E_{3} \cup L_{123} \cup L_{14} \cup L_{15} \cup L_{45} \cup L\right)$ is the cylinder where L is the strict transform of a general line passing through $\psi\left(E_{1}\right) \cap \psi\left(L_{123}\right)$. Thus we must prove that it is an A-polar cylinder. We consider the following.

$$
K_{X} \equiv \psi^{*}\left(K_{\mathbb{P}^{2}}\right)+E_{2}+E_{3}+L_{14}+L_{15}+L_{45}
$$

Thus we have

$$
\mu A \equiv-\psi^{*}\left(K_{\mathbb{P}^{2}}\right)-L_{14}-L_{15}-L_{45}+a_{1} E_{1}+\left(a_{2}-1\right) E_{2}+\left(a_{3}-1\right) E_{3}+a_{4} E_{4}+a_{5} E_{5}
$$

Without loss of generality we can assume that $a_{4} \leq a_{5}$. We have

$$
\begin{aligned}
-K_{\mathbb{P}^{2}} & \equiv\left(1-a_{5}-2 \epsilon\right) L+\left(1+a_{4}+a_{5}+\epsilon\right) \psi\left(\bar{L}_{123}\right)+\left(1+a_{5}+\epsilon\right) \psi\left(E_{1}\right) \\
& -a_{4} \psi\left(E_{4}\right)-a_{5} \psi\left(E_{5}\right)
\end{aligned}
$$

where $\epsilon \ll 1$ is a positive real number. From this we obtain the following.

$$
\begin{aligned}
\psi^{*}\left(-K_{\mathbb{P}^{2}}\right) & \equiv\left(1-a_{5}-2 \epsilon\right) \bar{L}+\left(1+a_{4}+a_{5}+\epsilon\right) \bar{L}_{123}+\left(1+a_{5}+\epsilon\right) E_{1} \\
& -a_{4} E_{4}-a_{5} E_{5}+\left(1+a_{4}+a_{5}+\epsilon\right)\left(E_{2}+E_{3}\right) \\
& +(1+\epsilon) \bar{L}_{45}+\left(1+a_{5}-a_{4}+\epsilon\right) \bar{L}_{14}+(1+\epsilon) \bar{L}_{15} .
\end{aligned}
$$

It implies that

$$
\begin{aligned}
\mu A & \equiv\left(1-a_{5}-2 \epsilon\right) \bar{L}+\left(1+a_{4}+a_{5}+\epsilon\right) \bar{L}_{123}+\left(a_{5}-a_{4}+\epsilon\right) \bar{L}_{14}+\epsilon \bar{L}_{15} \\
& +\epsilon \bar{L}_{45}+\left(1+a_{1}+a_{5}+\epsilon\right) E_{1}+\left(a_{2}+a_{4}+a_{5}+\epsilon\right) E_{2} \\
& +\left(a_{3}+a_{4}+a_{5}+\epsilon\right) E_{3}
\end{aligned}
$$

We consider the biraional morphsim $\phi: X \rightarrow \mathbb{P}^{2}$ given by the sequence of contraction

$$
L_{15} \rightarrow L_{25} \rightarrow L_{35} \rightarrow L_{45} \rightarrow L_{123}
$$

Then $\phi\left(E_{5}\right)$ is the conic and $\phi\left(E_{4}\right)$ is the tangent line at the point $\phi\left(L_{45} \cup L_{123}\right)$. Thus $X \backslash E_{4} \cup E_{5} \cup L_{123} \cup L_{15} \cup L_{25} \cup L_{35} \cup L_{45}$ is a cylinder which is isomorphic to $\mathbb{A}_{*}^{1} \times \mathbb{A}^{1}$. Thus we have to see that it is A-polar cylinder. Using the biraional morphism ϕ we have

$$
K_{X} \equiv \phi^{*}\left(K_{\mathbb{P}^{2}}\right)+L_{15}+L_{25}+L_{35}+L_{123}+2 L_{45}
$$

Then we have

$$
\mu A \equiv \phi^{*}\left(-K_{\mathbb{P}^{2}}\right)-L_{15}-L_{25}-L_{35}-L_{123}-2 L_{45}+\sum_{i=1}^{5} a_{i} E_{i} .
$$

Meanwhile we have

$$
\begin{aligned}
& -a_{1} \phi^{*}\left(e_{1}\right)=-a_{1}\left(E_{1}+L_{123}+2 L_{45}+L_{15}\right), \\
& -a_{2} \phi^{*}\left(e_{2}\right)=-a_{2}\left(E_{2}+L_{123}+2 L_{45}+L_{25}\right), \\
& -a_{3} \phi^{*}\left(e_{3}\right)=-a_{3}\left(E_{3}+L_{123}+2 L_{45}+L_{35}\right) .
\end{aligned}
$$

They imply that

$$
\begin{aligned}
\mu A & \equiv\left(3+a_{1}+a_{2}+a_{3}\right) e_{0}-\left(1+a_{1}\right) L_{15}-\left(1+a_{2}\right) L_{25}-\left(1+a_{3}\right) L_{35} \\
& -\left(1+a_{1}+a_{2}+a_{3}\right) L_{123}-2\left(1+a_{1}+a_{2}+a_{3}\right) L_{45} \\
& +a_{4} E_{4}+a_{5} E_{5}
\end{aligned}
$$

where e_{0} is the pullback of the class of line in \mathbb{P}^{2}. Without loss of generality we can assume that $a_{1} \leq a_{2} \leq a_{3}$. We have

$$
\begin{gathered}
\left(1+a_{3}+\epsilon\right) \phi^{*}\left(e_{5}\right)=\left(1+a_{3}+\epsilon\right)\left(E_{5}+L_{15}+L_{25}+L_{35}+L_{123}+2 L_{45}\right) \\
\left(1+a_{1}+a_{2}-a_{3}-2 \epsilon\right) \phi^{*}\left(e_{4}\right)=\left(1+a_{1}+a_{2}-a_{3}-2 \epsilon\right)\left(E_{4}+L_{123}+2 L_{45}\right) .
\end{gathered}
$$

Then

$$
\begin{aligned}
\mu A & \equiv\left(1+a_{3}+a_{4}+\epsilon\right) E_{5}+\left(1+a_{1}+a_{2}-a_{3}+a_{5}-2 \epsilon\right) E_{4} \\
& +\left(a_{3}-a_{1}+\epsilon\right) L_{15}+\left(a_{3}-a_{2}+\epsilon\right) L_{25}+\epsilon L_{35} \\
& -\left(1-a_{3}-\epsilon\right) L_{123}-2\left(1-a_{3}-\epsilon\right) L_{45} .
\end{aligned}
$$

References

[1] I. Arzhantsev, H. Flenner, S. Kaliman, F. Kutzschebauch, M. Zaidenberg, Flexible varieties and automorphism groups, Duke Math. J. 162 (2013), no. 4, 767-823.
[2] I.V. Arzhantsev, K. Kuyumzhiyan, M. Zaidenberg, Flag varieties, toric varieties, and suspensions: three instances of infinite transitivity, Sbornik: Math. 203 (2012), no. 7, 923949.
[3] Bogomolov, F., Karzhemanov, I., Kuyumzhiyan, K.Unirationality and existence of infinitely transitive models. In: Bogomolov, F., Hassett, B., Tschinkel, Yu. (eds.) Birational Geometry, Rational Curves, and Arithmetic, pp. 7792. Springer, New York (2013)
[4] I. Cheltsov, J. Park, and J. Won, Affine cones over smooth cubic surfaces, J. Eur. Math. Soc. (JEMS) 18 (2016), no. 7, 15371564.
[5] I. Cheltsov, J. Park, and J. Won, : Cylinders in singular del Pezzo surfaces, Compos. Math. 152 (2016), no. 6, 11981224.
[6] I. Cheltsov, J. Park, J. Won, Cylinders in del Pezzo surfaces,to appear Int. Math. Res. Notices. Int. Math. Res. Not. IMRN 2017, no. 4, 11791230.
[7] I.V. Dolgachev, Classical Algebraic Geometry: A Modern View, Cambridge University Press, 2012.
[8] R. Hartshorne, Algebraic Geometry, Springer-Verlag, New York, 1977.
[9] T. Kishimoto, Yu. Prokhorov, M. Zaidenberg, Group actions on affine cones, arXiv:0905.4647v2, 41p.; in: Affine Algebraic Geometry, CRM Proc. and Lecture Notes, vol. 54, Amer. Math. Soc., Providence, RI, 2011, 123-163.
[10] T. Kishimoto, Yu. Prokhorov, and M. Zaidenberg. Unipotent Group Actions on Del Pezzo Cones, Algebr. Geom. (to appear); arXiv:1212.4479 11p.
[11] R. Lazarsfeld, Positivity in Algebraic Geometry I. Classical setting: line bundles and linear series, Ergebnisse der Mathematik 48, Springer, 2004.
[12] Yu. I. Manin, Cubic forms: algebra, geometry, arithmetic, Nauka, Moscow, 1972 (Russian); English transl. North-Holland, Amsterdam, 1974.
[13] A. Yu. Perepechko, Flexibility of affine cones over del Pezzo surfaces of degree 4 and 5., Funktsional. Anal. i Prilozhen. 47 (2013), no. 4, 4552; translation in Funct. Anal. Appl. 47 (2013), no. 4, 284289
[14] J. Park, and J. Won, Flexible affine cones over del Pezzo surfaces of degree 4., Eur. J. Math. 2 (2016), no. 1, 304318.

Joonyeong Won
Department of Mathematics, Ewha Womans University, Seoul, Korea
E-mail address: leonwon@ewha.ac.kr

[^0]: Received February 26, 2022; Accepted April 3, 2022.
 2010 Mathematics Subject Classification. 14J45.
 Key words and phrases. del Pezzo surface, alpha invariant, cylinder.
 The author was supported by the National Research Foundation of Korea (NRF2020R1A2C1A01008018).

