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OPTIMAL PORTFOLIO CHOICE IN A BINOMIAL-TREE

AND ITS CONVERGENCE

Seungwon Jeong, Sang Jin Ahn, Hyeng Keun Koo, and Seryoong Ahn∗

Abstract. This study investigates the convergence of the optimal con-

sumption and investment policies in a binomial-tree model to those in the

continuous-time model of Merton (1969). We provide the convergence in
explicit form and show that the convergence rate is of order ∆t, which

is the length of time between consecutive time points. We also show by

numerical solutions with realistic parameter values that the optimal poli-
cies in the binomial-tree model do not differ significantly from those in the

continuous-time model for long-term portfolio management with a horizon

over 30 years if rebalancing is done every 6 months.

1. Introduction

A binomial tree is a stochastic model that can be used to describe asset price
movement as a discrete time process. In particular, it is well known that option
prices are easily computed using a binomial model (Hull and Basu [15]). Also,
it is often used to model price increments of risky assets in utility maximization
problems (Ahn and Koo [2]).

In this study, we investigate the relationship between a binomial tree and a
continuous time model in an optimal consumption and portfolio choice problem.
We construct a binomial tree model corresponding to the continuous-time model
of Merton [21] and compare the optimal policies. Specifically, we provide a proof
of convergence of the optimal policies in the binomial model to those in the
continuous time model and derive the convergence rate, as the time interval ∆t
between time nodes decreases. We also show by using numerical solutions that a
binomial tree with time interval of 6 months can provide a good approximation
to a continuous time model.
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Convergence from a utility maximization model in discrete time to that in
continuous time has been studied in He [14] and Bayraktar et al. [7]. They in-
vestigate whether optimal policies and value functions converge if discrete-time
price processes converge to those in continuous time in distribution, and propose
necessary conditions for the convergence. He [14] studies weak convergence in
a complete market and Bayraktar et al. [7] does in an incomplete market. In
particular, He [14] shows that the optimal consumption and portfolio policies
converge weakly and the value function converges to those in the continuous
time model, investigating the convergence of a multi-nomial model to a multi-
dimensional model. The previous research, however, establishes only abstract
weak convergence based on the dual martingale approach and does not provide a
guideline for practical application of a discrete-time model as an approximation
to a continuous-time model.

We derive the explicit-form solutions of optimal choices in a financial market
with asset prices following a binomial tree model, which converges to the Black
and Scholes [8] model, and establish convergence of optimal policies. Our conver-
gence proof is more explicit in that it establishes the convergence of explicit-form
policies, not just weak convergence as in the previous literature. In addition, we
provide a guideline for practical application of the binomial tree to portfolio
choice problems by deriving the convergence rate of optimal policies. We show
that the convergence rate is proportionate to the length ∆t of the time inter-
val between consecutive time points.1 For an application to long-term portfolio
management, by numerical solutions we provide evidence that the binomial
model with time interval of 6 months provides a good approximation to opti-
mal policies in the continuous-time model. This paper is the first to examine the
convergence speed of the optimal policies of a binomial tree model in a utility
optimization problem.

The rest of this paper is structured as follows. In Section 2, we provide a
brief literature survey. Section 3 presents the utility maximization problem in a
binomial model and derives its analytical solutions. Section 4 provides the proof
of convergence of optimal policies and derive the convergence rate. Section 5
concludes.

2. Related Literature

Since Cox et al. [10], binomial tree models have been used in finance to
model stochastic asset price processes. In particular, it has been widely used
to solve challenging problems with elementary technique that are difficult to
derive explicit solutions, e.g., pricing American options.

For convergence of asset prices in binomial models, Cox et al. [10] show that
European vanilla option prices in a binomial model converge to the price in
Black and Scholes [8] model and Omberg [22] investigate the convergence of
several binomial-pricing parameters, including one used in Cox et al. [10], to

1That is, the convergence errors decline in proportion to ∆t.



PORTFOLIO CHOICE IN A BINOMIAL-TREE AND ITS CONVERGENCE 279

an appropriate lognormal diffusion process. As a natural next step, Amin and
Khanna [3] and Jiang and Dai [17] prove that American vanilla option prices in a
binomial tree model also converge to those in the corresponding continuous time
model. Moreover, Jiang and Dai [18] investigate the convergence for European
and American path-dependent options. Qian et al. [23] and Kwon and Kim [20]
study the convergence with jump diffusion process in American and look-back
options, respectively. All the studies mentioned above study the convergence in
asset prices, but do not consider the convergence of optimal policies of an agent.

As other directions of taking advantage of simple binomial tree models,
Boyle and Vorst [9] replicate options with transaction costs, Balzer [4] pro-
poses a model dealing with an investment performance measure, and Bäuerle
and Mundt [5] study a model of risk management with a binomial tree model.
Again, the optimal policy of agents are not investigated in these studies.

There is a vast literature on utility optimization with a binomial tree. Dybvig
and Koo [11] introduce a binomial tree method to analyze asset allocation with
taxes and propose a numerical algorithm. Ahn and Koo [2] solve the optimiza-
tion problem with Epastein and Zin [12]-type utility function, and Rizal et al.
[24] do with a HARA utility function. Ahn et al. [1] analyze the equity premium
puzzle in a general equilibrium framework. Jang et al. [16] use a binomial tree
model to analyze a model with longevity risk. However, all these studies do not
compare their optimal policies with those in a continuous time model.

For a utility optimization problem, in addition to He [14] and Bayraktar
et al. [7] mentioned previously, Bayer and Veliyev [6] study the convergence
of optimal policies in a discrete portfolio choice problem to those in a con-
tinuous model. They consider a terminal wealth maximization problem given
proportional transaction costs and demonstrate the weak convergence of bino-
mial model. However, they use the log utility function and only consider the
terminal wealth, whereas we use a constant relative risk aversion (CRRA) utility
function and consider utilities from intermediate consumptions as well as from
the terminal wealth. Therefore, our study and their study are complementary to
each other, since Bayer and Veliyev [6] consider transaction costs, not covered
in this study.

3. A Binomial Tree Model and a Utility Maximization Problem

Before describing our binomial tree model, we review Merton [21]’s problem
as a benchmark of the continuous time model. In his problem, an agent wishes
to maximize the following lifetime utility function:

E

[∫ T

0

e−ρtU(ct)dt+ e−ρTB(WT )

]
, (1)

where ct is the consumption rate at time t, Wt is the agent’s wealth level at
time t, ρ > 0 is the subjective discount rate for felicity of future consumption.
He considers the felicity function U of the CRRA type and provides a solution
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in explicit form:

U(c) =
c1−γ

1− γ
,

where γ is the coefficient of relative risk aversion. The bequest function B(W )
is given by

B(W ) = εγ
W 1−γ

1− γ
,

where ε is a parameter denoting the strength of bequest motive.
Merton [21] assumes two financial assets in the market: a risky asset and a

riskless asset.2 The rate of return on the riskless asset is constant r > 0. The
price dynamics of the risky asset follows a geometric Brownian motion as

dS

S
= µdt+ σdZt, (2)

where Zt is the standard Brownian motion at time t, µ > 0 is a constant
expected rate of return, and σ is the constant volatility.

The agent’s wealth evolves according to the dynamics:

dWt = (rWt − ct + πt(µ− r)) dt+ πtσdZt

where πt is the dollar amount of risky investment at time t. The following
assumption is made for well-posedness of the optimization problem.

Assumption 3.1.

K ≡ r +
ρ− r
γ

+
γ − 1

2γ2
θ2 > 0. (3)

Let θ denote the market price of risk as follows:

θ ≡ µ− r
σ

.

Proposition 3.2. (Merton) The optimal policies in the above optimization
problem are given as follows:

c∗ =
K

1 + (Kε− 1) e−KT
W0, for K > 0 (4)

π∗ =
µ− r
γσ2

W0. (5)

We now describe a counterpart of Merton [21]’s problem in discrete time. We
consider the following objective function in discrete time:

E

[
N−1∑
i=0

βiU(cti)∆t+ βNB(WT )

]

2In section 4.2, the market portfolio is used as a proxy for this risky asset. Even if the

risky asset is replaced by an individual stock, essentially the same result will be obtained in

the economy where CAPM holds.
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Figure 1. N+1-period Binomial tree

where β is the subjective discount factor for the future utility of consumption,
which corresponds to e−ρ∆t in equation (1). The time interval between ti and
ti+1 is denoted by ∆t and each ti satisfies

0 = t0 < t1 < · · · < tN = T.

We consider a binomial tree model of the dynamics of the risky asset price
S(t).

As illustrated in Figure 1, there are two states of the gross return of the
risky asset price at each step: up and down, and the gross returns are denoted
by u and d, respectively. The probability of each state is also denoted Pu and
Pd respectively. Of course, the sum of Pu and Pd is equal to 1. It is shown in
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He [13] that this binomial tree model converges in distribution to the geometric
Brownian motion in (2).

Note that if we denote 1 + r as R, the agent’s total wealth at time t + 1,
Wt+1, can be written as

Wt+1,u = R (Wt − ct∆t− πt) + πtu,

Wt+1,d = R (Wt − ct∆t− πt) + πtd.

3.1. Two-period model

We first consider a two-period model. To derive the optimal policies of the
model, we apply the dynamic programming approach. The agent’s lifetime util-
ity at time t can be represented as follows:

U(ct)∆t+ βEt [U(ct+1)∆t+ βEt+1 [B(Wt+2)]] , (6)

where Et is conditional expectation at time t. Equation (6) is different from other
common 2-period utility optimization problems. As ct in (6) is the consumption
rate, the utility at time t should be U(ct)∆t. In addition, even if (6) is a two-
period model, it looks like a three-period model because the agent bequeaths
wealth after consuming from t+1 to t+2. The agent’s goal is finding the optimal
combination of ct and πt in (6).

For simplicity, we take t = 0. The value function V0(W0) is written as follows:

V0(W0) = max
c,π
{U(c0)∆t+ βE [U(c1)∆t+ βE1 [B(W2)]]} . (7)

Equation (7) can also be rewritten as

V0(W0) = max
c0,π0

{
U(c0)∆t+ βE

[
max
c1,π1

{U(c1)∆t+ βE1 [B(W2)]}
]}

.

We define the following value function for t = 1:

V1(W1) = max
c1,π1

{U(c1)∆t+ βE [B(W2)]} . (8)

Proposition 3.3. The optimal consumption and portfolio investment of the
maximization problem in (8) are given as follows:

c∗1 =
β−

1
γR1− 1

γ ε−1

β−
1
γR1− 1

γ ε−1∆t+ P
1
γ
u q

1− 1
γ

u + P
1
γ

d q
1− 1

γ

d

W1,

π∗1 =
R
(

(qu/Pu)
− 1
γ − (qd/Pd)

− 1
γ

)
(u− d)

(
β−

1
γR1− 1

γ ε−1∆t+ P
1
γ
u q

1− 1
γ

u + P
1
γ

d q
1− 1

γ

d

)W1,

where qu and qd are the risk neutral probabilities of up state and down state,
respectively, as following:

qu ≡
R− d
u− d

, qd ≡
u−R
R− d

. (9)
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The proof of Theorem 3.3 is provided in the appendix. Substituting optimal
policies into the value function in (8), we obtain the following corollary.

Corollary 3.4. The value function (8) is given by

V1(W1) = A1
W 1−γ

1

1− γ
. (10)

Here, A1 is defined as

A1 ≡ βR1−γεγ
(
β−

1
γR1− 1

γ ε−1∆t+ P
1
γ
u q

1− 1
γ

u + P
1
γ

d q
1− 1

γ

d

)γ
. (11)

By Corollary 3.4, we can easily derive the optimal policies for the two-period
model.

Proposition 3.5. The optimal policies for the two-period model are given as

c∗0 =
(βA1)−

1
γR1− 1

γ

(βA1)−
1
γR1− 1

γ ∆t+ P
1
γ
u q

1− 1
γ

u + P
1
γ

d q
1− 1

γ

d

W0,

π∗0 =
R
(

(qu/Pu)
− 1
γ − (qd/Pd)

− 1
γ

)
(u− d)

(
(βA1)−

1
γR1− 1

γ ∆t+ P
1
γ
u q

1− 1
γ

u + P
1
γ

d q
1− 1

γ

d

)W0.

In addition, the value function (7) can be written as

V0(W0) = A2
W 1−γ

0

1− γ
where

A2 ≡ βR1−γA1

(
(βA1)−

1
γR1− 1

γ ∆t+ P
1
γ
u q

1− 1
γ

u + P
1
γ

d q
1− 1

γ

d

)γ
.

3.2. N+1-period model

We now consider a general N + 1-period model. By application of dynamic
programming, we obtain the following result.

Theorem 3.6. The optimal policies and value function of N + 1-period model
are given by

c∗0 =
(βAN )−

1
γR1− 1

γ

(βAN )−
1
γR1− 1

γ ∆t+ P
1
γ
u q

1− 1
γ

u + P
1
γ

d q
1− 1

γ

d

W0, (12)

π∗0 =
R
(

(qu/Pu)
− 1
γ − (qd/Pd)

− 1
γ

)
(u− d)

(
(βAN )−

1
γR1− 1

γ ∆t+ P
1
γ
u q

1− 1
γ

u + P
1
γ

d q
1− 1

γ

d

)W0, (13)

V0(W0) = AN+1
W 1−γ

0

1− γ
(14)
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where the sequence {AN} satisfies the following recursive relation:

AN+1 = βR1−γAN

(
(βAN )−

1
γR1− 1

γ ∆t+ P
1
γ
u q

1− 1
γ

u + P
1
γ

d q
1− 1

γ

d

)γ
. (15)

The solution to the recursive relation (15) can be represented as

A
1
γ

N+1 = ∆t

N∑
i=0

Di +A
1
γ

0 D
N+1 (16)

where

A0 ≡ εγ , (17)

D ≡ β
1
γR

1−γ
γ

(
P

1
γ
u q

1− 1
γ

u + P
1
γ

d q
1− 1

γ

d

)
. (18)

4. Convergence to continuous time model

4.1. Convergence and convergence rate

We apply the parameters as proposed by Hull and Basu [15] as shown in the
first and second columns of Table 1. In addition, the third column of Table 1 is
the Taylor series approximation to the parameters in the second column.

Table 1. Parameters and approximation of binomial model

parameters value approximation

u eσ
√
∆t 1 + σ

√
∆t+O(∆t)

d e−σ
√
∆t 1− σ

√
∆t+O(∆t)

R er∆t 1 + r∆t+O
(
(∆t)2

)
β e−ρ∆t 1− ρ∆t+O

(
(∆t)2

)
Pu eµ∆t−d

u−d
1
2

(
1 + ξµ

√
∆t+O(∆t)

)
Pd u−eµ∆t

u−d
1
2

(
1− ξµ

√
∆t+O(∆t)

)
qu er∆t−d

u−d
1
2

(
1 + ξr

√
∆t+O(∆t)

)
qd u−er∆t

u−d
1
2

(
1− ξr

√
∆t+O(∆t)

)

Here, we define ξµ and ξr in Table 1 as follows:

ξµ =
µ

σ
, ξr =

r

σ
.

To prove the convergence of the optimal policies to those in the continuous
time, it is sufficient to show that equations (12) and (13) converge to (4) and
(5) respectively.
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Lemma 4.1. Applying the Taylor series expansion to D in (18) of the recur-
rence relation {AN}, we obtain the following:

D = 1−
(
r +

ρ− r
γ

+
γ − 1

2γ2
θ2

)
∆t+O

(
(∆t)

2
)
.

By Assumption 3.1, D < 1. Then, the limit of DN is given as

lim
N→∞

DN = e−KT .

The solution AN to the recursive equation in (16) is obtained as

A
1
γ

N =
1−DN−1

1−D
∆t+ εDN ,

and the limit is

lim
N→∞

A
1
γ

N =
1 + (Kε− 1) e−KT

K
.

The following Theorem is the main result of this study. We show that the
optimal consumption and portfolio policies in the binomial model converge to
those in Merton’s continuous time model, and the rate of convergence is pro-
portional to ∆t.

Theorem 4.2. Let the convergence error of the optimal portfolio and consump-
tion be lπ and lc, respectively. When ∆t is small enough, the errors satisfy the
following:

lπ =
1

σ

(
M +

µ− r
γσ2

(
r

σ
−

K

1 + (Kε− 1)e−KT
−

1− γ
2γ2

θ2
))

W0∆t+O
(

(∆t)2
)
,(19)

lc =

(
K

1 + (Kε− 1)e−KT

(
r +

ρ− r
γ
− 1

)
−

1− γ
2γ2

θ2
)
W0∆t+O

(
(∆t)2

)
(20)

where

M ≡
1

3γ

(
1

γ
− 1

)(
1

γ
− 2

)
ξ3µ −

1

γ2

(
1

γ
− 1

)
ξ2µξr +

1

γ2

(
1

γ
+ 1

)
ξµξ

2
r

−
1

3γ

(
1

γ
+ 1

)(
1

γ
+ 2

)
ξ3r .

The proof is given in the appendix. Theorem 4.2 has a significance for an
approach that approximates a continuous time model using a binomial tree
model. We know that the convergence speed of risky asset to a continuous time
model is proportional to

√
∆t, which is well represented in Table 1. However,

the convergence rate of the optimal policies is proportional to ∆t as in Theorem
4.2, and therefore, we can say that the convergence rate of the optimal strategy
is faster than that of the asset price process. Consequently, it is efficient to
approximate a continuous time model of consumption and portfolio choice by a
binomial model.
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4.2. Numerical solutions and convergence

In this section we provide numerical solutions and illustrate the convergence
of optimal policies. For the numerical solutions, we set the parameter values as
follows:

µ = 0.07, r = 0.01, σ = 0.2, γ = 2, ε = 0.1, ρ = 0.02, T = 30. (21)

According to Jordà et al. [19], the average rate of return and the volatility of
global stocks have been 6.88% and 21.79%, respectively, over the past 100 years.
During the same period, the short-term bond yield has been 1.03%. Hence, the
above parameters are consistent with the data from the global financial market.
In addition, we set the maturity T is 30 years because we consider a long-term
investor’s problem.

Figure 2 shows convergence with respect to the number of period, and Figure
3 presents the percentage error of convergence. The left panels give the opti-
mal share of investment in the risky asset, and the right panels give optimal
consumption.
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Figure 2. Percentage errors of optimal policies
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Figures 2 and 3 show that as N increases, the optimal policies in the binomial
model converge to those in the model of Merton [21].

In binomial tree models, fixing the expiration date and increasing the number
of periods is equivalent to decreasing the length of time interval ∆t. When
consumption and investment decisions are made in discrete time,3 we need to
know how one year should be discretized to obtain results close enough to a
continuous time model. For example, if an investor wants to reduce frequency
of transactions to save transaction or other costs, we must know the minimum
number of tradings that errors are within a certain level. The following table
presents the percentage errors according to the number of periods on 30-year
and 50-year maturity. The parameter values are the same as in (21) except for
T .

Table 2. Percentage errors depending on maturity

parameters 30-year maturity 50-year maturity
(N) portfolio consumption portfolio consumption

10 0.0546 0.0236 0.0275 0.0295
30 0.0178 0.0083 0.0093 0.0103
50 0.0107 0.0050 0.0056 0.0062
100 0.0053 0.0025 0.0028 0.0031
300 0.0018 0.0009 0.0009 0.0010
500 0.0011 0.0005 0.0006 0.0006

The implication of Table 2 is as follows: with the maturity of 30 years, it
is enough to model 50 discrete periods if the error between the policies in the
discrete and continuous time is allowed to be within 1%. In other words, we
have to make a decision only every 7 months to choose the optimal policies
close to those in a continuous time. Likewise, if we consider a maturity of 50
years and the tolerance level is 0.01, then we may choose the number of period
of 30 discrete times (i.e., the rebalancing takes place almost every 20 months).
Note that the errors in Table 2 are the result from applying the parameter
values in (21). They change with the level of γ, ε, ρ, reflecting the subjective
preference.

Figure 4 gives the percentage error according to a change in the risk aversion
coefficient. All parameter values are the same as in (21) except for γ.

In Figure 4, the error of the consumption choice is consistent regardless of
the level of γ, and however, the error of portfolio choices decreases with the co-
efficient of risk aversion. The error is also small enough to be ignored with large
N regardless of γ, and thus the binomial model provides a good approximation
to a continuous-time model if N is sufficiently large.

3Even with a high frequency trading, it is equivalent to a transaction which ∆t is close to

zero on discrete time
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Figure 4. Percentage errors depending on γ

5. Conclusion

In this study, we have shown that the optimal policies of a binomial model
converge to those in a continuous time model, and the convergence rate is pro-
portional to the length ∆t between consecutive time points. In particular, We
have obtained the solution of Merton [21] as ∆t approaches zero.

We have also illustrated by numerical solutions that the approximation ap-
proach with a binomial tree model to a continuous model is very efficient. We
have shown that the optimal policies in a long-term portfolio problem of more
than 30 years are not significantly different from the those of the continuous
model when rebalancing is made every six months.

It would be interesting to extend the research by considering richer economic
features or more realistic market enviorments, e.g. the Epstein and Zin [12]-type
utility function, time-varying investment opportunities, optimal stopping time
problems, specific budget constraints, and transaction costs. It is also expected
that many research problems, difficult to solve in a continuous time model, can
be solved with elementary techniques in a discrete time model similar to the
binomial model in this study.
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Appendix A. Proof of Theorem 3.3

The value function can be represented by following:

∂V1

∂c1
= c−γ1 −Rβεγ [Pu (R (W1 − c1∆t− π1) + uπ1)

−γ
(22)

+Pd (R (W1 − c1∆t− π1) + dπ1)
−γ

]

= 0,

∂V1

∂π1
= βεγ [(u−R)Pu (R (W1 − c1∆t− π1) + uπ1)

−γ
(23)

+(R− d)Pd (R (W1 − c1∆t− π1) + dπ1)
−γ

]

= 0.

We can derive the following from equation (23) using risk neutral probability
definition in (9).

π1 =
R
(

(qu/Pu)
− 1
γ − (qd/Pd)

− 1
γ

)
(u− d)

(
P

1
γ
u q

1− 1
γ

u + P
1
γ

d q
1− 1

γ

d

) (W1 − c1∆t) . (24)

And then the optimal consumption rate at time t = 1 (22) is calculated by the
above equation (24) as follows:

c∗1 =
β−

1
γR1− 1

γ ε−1

β−
1
γR1− 1

γ ε−1∆t+ P
1
γ
u q

1− 1
γ

u + P
1
γ

d q
1− 1

γ

d

W1.

Substituting this optimal consumption into Equation (24), we have the optimal
portfolio as follows:

π∗1 =
R
(

(qu/Pu)
− 1
γ − (qd/Pd)

− 1
γ

)
(u− d)

(
β−

1
γR1− 1

γ ε−1∆t+ P
1
γ
u q

1− 1
γ

u + P
1
γ

d q
1− 1

γ

d

)W1.
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Appendix B. Proof of Theorem 4.2

(1) The error of optimal portfolio is computed as follows:

lπ =
µ− r
γσ2

W0 −
R
(

(qu/Pu)
− 1
γ − (qd/Pd)

− 1
γ

)
(u− d)

(
(βAN )

− 1
γ R

1− 1
γ ε−1∆t+ P

1
γ
u q

1− 1
γ
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γ

d q
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γ

d

)W0

=
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γσ2
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γ
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3
2 +O
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5
2
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2σ
√

∆t

[
1 +

((
1 +

(
r + ρ−r

γ

)
∆t

)
A

− 1
γ

N + 1−γ
2γ2

θ2
)

∆t+O
(

(∆t)2
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γ
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2γ2
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∆t+O
(

(∆t)2
)]W0

=
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γσ2
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1

σ

(
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(
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.

Let N →∞ and we obtain (19).

lπ =
1

σ
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r
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1 + (Kε− 1)e−KT
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2
)
.

(2) The error of consumption is computed as follows:
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In a similar way, we obtain (20) as N →∞ as follows:
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