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ON THE EQUATIONS DEFINING SOME CURVES OF

MAXIMAL REGULARITY IN P5

Wanseok Lee∗ and Shuailing Yang

Abstract. For a nondegenerate projective variety, it is a classical prob-

lem to study its defining equations with respect to a given embedding.

In this paper, we precisely determine minimal sets of generators of the
defining ideals of some curves of maximal regularity in P5.

1. Introduction

Throughout this paper, we work over an algebraically closed field K of arbitrary
characteristic. Let Pr andR := K[X0, X1, · · · , Xr] be respectively the projective
r-space over K and the homogeneous coordinate ring of Pr. Let C ⊂ Pr be a
nondegenerate irreducible curve and IC be the homogeneous ideal of C in R. To
understand the curve C, it is natural to study the defining equations of IC and
the syzygies among them. To the authors’ knowledge, it should be one of the
most difficult problems in projective algebraic geometry and several results are
known. As the simplest case, the problems to guarantee that IC is generated by
quadrics and that the first few syzygy modules are generated by linear syzygies
are establishing (see [1], [3], [4], [5], [15], [16] and so on). Also the defining
equations of Veronese varieties, rational normal scrolls and Segre varieties are
well understood (see [7]). In [8], [10] and [11], one of the authors in the present
paper provided a complete description of defining equations of non-normal del
Pezzo varieties.

In this line, we continue the study begun in [13] and [12] to describe a minimal
set of generators of the defining ideal ICd

of rational curves Cd ⊂ Pr, d ≥ r
parameterized as

Cd = {[sd(P ) : sd−1t(P ) : sr−2td−r+2(P ) : sr−3td−r+3(P ) : · · · : std−1(P ) : td(P )] | P ∈ P1}
(1)
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where T := K[s, t] be the homogeneous coordinate ring of P1. In [13] and [12],
the authors provide a complete description of defining equations for the cases
where r = 3 and r = 4 in (1). The results are

Theorem 1.1 ([13]). Let Cd ⊂ P3, d ≥ 3 be a curve defined as the parametriza-
tion

Cd = {[sd(P ) : sd−1t(P ) : std−1(P ) : td(P )] | P ∈ P1}.
Then Cd is a smooth rational curve of degree d and of maximal regularity d−1.
In particular, the defining ideal ICd

of Cd is minimally generated as follows:

ICd
= 〈X0X3 −X1X2, F1, F2, . . . , Fd−1〉

where Fi = Xd−i−1
0 Xi

2 −Xd−i
1 Xi−1

3 for 1 ≤ i ≤ d− 1.

Theorem 1.2 ([12]). Let Cd ⊂ P4, d ≥ 4 be a curve defined as the parametriza-
tion

Cd = {[sd(P ) : sd−1t(P ) : s2td−2(P ) : std−1(P ) : td(P )] | P ∈ P1}
Then Cd is a smooth rational curve of degree d and of maximal regularity d−2.
In particular, the defining ideal ICd

of Cd is minimally generated as follows:
For n ≥ 2,

(1) If d = 2n, then

ICd
= 〈Q1, Q2, Q3, G1, G2, Hn, Hn+1, · · · , H2n−2〉.

(2) If d = 2n+ 1, then

ICd
= 〈Q1, Q2, Q3, Fn, Fn+1, · · · , F2n−1〉

where

Q1 = X0X3 −X1X2, Q2 = X0X4 −X1X3, Q3 = X2X4 −X2
3 and

Gi = X1X
i−1
3 Xn−i

4 −Xn+i−2
2 X2−i

3 for i = 1, 2

Hn+j−1 = X2j−1
0 Xn−j

2 −X2j
1 Xn−j−1

4 for 1 ≤ j ≤ n− 1

Fn+i−1 = X2i−2
0 Xn−i+1

2 −X2i−1
1 Xn−i

4 for 1 ≤ i ≤ n.

As a next case, the main purpose of this article is to determine a minimal
generating set of the defining ideal of rational curves parameterized as (1) for
r = 5.

First we show that Cd is a smooth rational curve of degree d which is con-
tained in the rational normal surface scroll S(1, 3) as a divisor H + (d − 4)F
where H and F are respectively the hyperplane divisor and a ruling line (see
Proposition 2.2). This observation enables us to obtain the exact structure
of minimal generators of ICd

in terms of graded Betti numbers thanks to [9,
Theorem 1.2]. We also compute several examples by means of the Computer
Algebra System SINGULAR [2] which pose the concrete expressions of minimal
generators of ICd

in Theorem 2.4. In our main result, Theorem 2.4 provides an
explicit description of a set of minimal generators of the ideal ICd

according to
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the degree d = 3n− 1, d = 3n and d = 3n+ 1 for n ≥ 3. For d = 5, 6, 7 we also
obtain the minimal generating sets of the ideal ICd

in Example 2.5.

2. Main Theorem

Notation and Remarks 2.1. (a) Let T := K[s, t] be the homogeneous coor-
dinate ring of P1. For each k ≥ 1, we denote by Tk the k-th graded component
of T .
(b) A rational normal curve C̃ ⊂ Pd of degree d parameterized as

C̃ = {[sd(P ) : sd−1t(P ) : · · · : std−1(P ) : td(P )] | P ∈ P1} (2)

is defined by the common zero locus of the polynomials Fi,j = XiXj−Xi−1Xj+1

for 1 ≤ i ≤ j ≤ d − 1. In particular, the defining ideal IC̃ of C̃ is minimally
generated by the set {Fi,j | 1 ≤ i ≤ j ≤ d− 1}.
(c) A nondegenerate rational curve C ⊂ Pr of degree d is given by a linear

projection πΛ : C̃ → Pr of C̃ ⊂ Pd from a linear subspace Λ ∼= Pd−r−1 of Pd.

Indeed, the normalization of C can be realized as the rational normal curve C̃,
hence it follows that there exists a subset {f0, f1, . . . , fr} ⊂ Td of K-linearly
independent forms of degree d in T such that C is a curve parameterized as

C = {[f0(P ) : f1(P )) : · · · : fr(P )] | P ∈ P1}.
(d) A rational normal surface scroll S := S(a1, a2) ⊂ Pr of degree a1 + a2

parameterized as

S = {[sa1(P ) : sa1−1t(P ) : · · · : ta1(P ) : sa2(P ) : sa2−1t(P ) : · · · : ta2(P )] | P ∈ P1}

is defined by (2× 2)-minors of the matrix[
X0 X1 · · · Xa1−1 Xa1+1 Xa1+2 Xa1+a2−1

X1 X2 · · · Xa1
Xa1+2 Xa1+3 Xa1+a2

]
.

For a1 = 1 and a2 = 3, the defining ideal IS of S is minimally generated by the
following set

{X0X3−X1X2, X0X4−X1X3, X0X5−X1X4, X2X4−X2
3 , X2X5−X3X4, X3X5−X2

4}

In particular, a divisor of S is written by aH + bF where H and F are respec-
tively the hyperplane divisor and a ruling line of S for a, b ∈ Z.
(e) Let X ⊂ Pr be a nondegenerate projective variety. The graded Betti num-
bers, denoted by βi,j(X), of X are defined as

βi,j(X) := dimKTorRi (IX ,K)i+j .

Then we call β(X) the Betti table of X consists of βi,j(X) as an entry in the
i-th column and j-th row. In particular, β1,j(X) corresponds to the number of
minimal generators of degree j in the defining ideal IX of X.
(f) X ⊂ Pr is said to be m-regular if βi,m+1(X) = 0 for every i ≥ 1. In
particular, IX is generated by forms of degree ≤ m. The Castelnuovo-Mumford
regularity (or simply the regularity) of X, denoted by reg(X), is defined as the
least integer m such that X is m-regular(cf. [14]). In [6], the authors proved that
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reg(X) ≤ d−r+2 for dimK(X) = 1. They also provided a complete classification
theory about curves of maximal regularity d − r + 2. It is interesting that if
d ≥ r + 2 then X is a curve of maximal regularity if and only if it is a smooth
rational curve which admits a (d− r + 2)-secant line L

Keeping the notation as above, let Cd ⊂ P5 for d ≥ 5 be a curve described as

Cd := {[sd(P ) : sd−1t(P ) : s3td−3(P ) : s2td−2(P ) : std−1(P ) : td(P )] | P ∈ P1}
(3)

Let R := K[X0, X1, X2, X3, X4, X5] be the homogeneous coordinate ring of P5.

Proposition 2.2. Let Cd be as above. Then,

(1) Cd is a smooth rational curve of degree d.
(2) Cd is contained in the rational normal surface scroll S(1, 3) as a divisor

linearly equivalent to H + (d− 4)F where H and F are the hyperplane
divisor and a ruling line, respectively.

(3) Cd is a curve of maximal regularity d − 3 with a (d − 3)-secant line L
to Cd. In particular, L is the minimal section S(1) of S(1, 3).

Proof. (1) If d = 5, then it follows immediate from Notation and Remarks

2.1.(b). Now suppose that d > 5 and let C̃ ⊂ Pd be the rational normal curve
defined as in Notation and Remarks 2.1.(b). Let Λ be a (d − 6)-dimensional
linear subspace of Pd spanned by (d− 5) standard coordinate points

{[0, 0, 1, 0, . . . , 0, 0], [0, 0, 0, 1, 0, . . . , 0, 0], . . . , [0, 0, · · · , 0, 1, 0, 0, 0, 0]}

and consider the linear projection map πΛ : C̃ → P5 of C̃ from the center

Λ. Then it holds that the projection image πΛ(C̃) is the curve Cd by the

construction. In particular, the map πΛ is an isomorphism since Λ ∩ C̃2 = ∅
where C̃2 is the second join of C̃ with itself. For details, we refer to the reader
to see [17] or [12, Notation and Remarks 2.2].
(2) It is easy to see that the curve Cd satisfies the following six quadratic
equations

{X0X3−X1X2, X0X4−X1X3, X0X5−X1X4, X2X4−X2
3 , X2X5−X3X4, X3X5−X2

4}

which define the rational normal surface scroll S := S(1, 3)(see Notation and
Remarks 2.1.(d)). Thus it holds that Cd ⊂ S, and hence Cd is linearly equivalent
to a divisor H + (d − 4)F of S. Indeed, we may assume that Cd ≡ aH + bF
for some integer a ≥ 1 and b since Cd is irreducible. Consider the long exact
sequence

→ H1(Pr, IS(1))→ H1(Pr, ICd(1))→ H1(S,OS((1−a)H−bF ))→ H2(Pr, IS(1))→ · · ·

which is obtained from the exact sequence

0→ IS → ICd
→ OS(−aH − bF )→ 0.

Then it follows that

H1(Pr, ICd
(1)) ∼= H1(S,OS((1− a)H − bF )) (4)
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since S is arithmetically Cohen-Macaulay. Now suppose that a ≥ 2. Then it
holds that H1(S,OS((1 − a)H − bF )) = 0 and hence Cd is linearly normal by
the isomorphism (4). This is a contradiction, and hence a = 1 since the map πΛ

in the proof of (1) is an isomorphism. So Cd is linearly equivalent to a divisor
H + bF of degree d on S(1, 3). Thus we conclude that b = d− 4.
(3) It is well known that reg(Cd) ≤ d−3 by [6]. On the other hand, the minimal
section S(1) is a (d−3)-secant line to Cd since ](Cd∩S(1)) = (H+(d−4)F ).(H−
3F ) = d− 3. Thus reg(Cd) ≥ d− 3. This completes the proof. �

Corollary 2.3. Let Cd be as in Proposition 2.2. Then the Betti table β(Cd) of
Cd is described as following Table 1:

i 1 2 3 4 5

βi,d−3 1 4 6 4 1

βi,d−4 0 0 0 0 0

βi,d−5 1 4 6 4 1

βi,d−6 0 0 0 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
βi,n+3 0 0 0 0 0

βi,n+2 1 4 6 4 1

βi,n+1 0 0 0 0 0

βi,n 4 12 12 4 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
βi,3 0 0 0 0 0

βi,2 6 8 3 0 0

i 1 2 3 4 5

βi,d−3 1 4 6 4 1

βi,d−4 0 0 0 0 0

βi,d−5 1 4 6 4 1

βi,d−6 0 0 0 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
βi,n+3 1 4 6 4 1

βi,n+2 0 0 0 0 0

βi,n+1 1 4 10 6 1

βi,n 2 4 0 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
βi,3 0 0 0 0 0

βi,2 6 8 3 0 0

i 1 2 3 4 5

βi,d−3 1 4 6 4 1

βi,d−4 0 0 0 0 0

βi,d−5 1 4 6 4 1

βi,d−6 0 0 0 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
βi,n+3 0 0 0 0 0

βi,n+2 1 4 6 4 1

βi,n+1 0 6 8 3 0

βi,n 1 0 0 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
βi,3 0 0 0 0 0

βi,2 6 8 3 0 0

Table 1. β(Cd) where d = 3n− 1, d = 3n and d = 3n+ 1, respectively.

Proof. We may consider the curve Cd as a divisor H + (d− 4)F on the rational
normal surface scorll S(1.3) by Proposition 2.2.(2). Then we get the desired
Betti tables by applying the curve Cd to [9, Theorem 1.3]. �

As in [13] and [12], we try to construct many examples of minimal generat-
ing sets of defining ideal ICd

of Cd for small d ≥ 5 by means of the Computer
Algebra System “SINGULAR” [2]. Our many computational examples and in-
tuitions enable us to expect general shapes of the minimal generators of defining
ideals ICd

in Theorem 2.4.

To state our main theorem, we fix some notations for n ≥ 3 and j = −1, 0, 1
as followings:

(i)

{
F[j,i] = X1X

i
4X

n−i−1
5 −Xn+i+j−1

2 X1−j−i
3 for 0 ≤ i ≤ 1− j

G[j,k] = X3k+2+j
0 Xn−k−1

2 −X3(k+1)+j
1 Xn−k−2

5 for 0 ≤ k ≤ n− 2

(ii)

{
Q1 = X0X3 −X1X2, Q2 = X0X4 −X1X3, Q3 = X0X5 −X1X4

Q4 = X2X4 −X2
3 , Q5 = X2X5 −X3X4, Q6 = X3X5 −X2

4

and the set Σ = {Q1, Q2, Q3, Q4, Q5, Q6} is a minimal generating set of
the defining ideal of S(1, 3)
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Theorem 2.4. Let Cd ⊂ P5, d ≥ 8 be stated as in (3). Then Cd is a smooth
rational curve of degree d and of maximal regularity d−3. In particular, letting
d = 3n+ j for n ≥ 3 and j = −1, 0, 1, the following sets are minimal generating
sets of defining ideal ICd

of Cd:

(1) If d = 3n− 1, then

Σ−1 = Σ ∪ {F[−1,0], F[−1,1], F[−1,2]} ∪ {G[−1,k] | 0 ≤ k ≤ n− 2}
is a minimal generating set of ICd

.
(2) If d = 3n, then

Σ0 = Σ ∪ {F[0,0], F[0,1]} ∪ {G[0,k] | 0 ≤ k ≤ n− 2}
is a minimal generating set of ICd

.
(3) If d = 3n+ 1, then

Σ1 = Σ ∪ {F[1,0]} ∪ {G[1,k] | 0 ≤ k ≤ n− 2}
is a minimal generating set of ICd

.

Proof. The first part of the theorem follows from Proposition 2.2. For the re-
maining parts of the proof, we will describe a minimal set of generators of the
defining ideal ICd

according to the degree d = 3n+j with n ≥ 3 and j = −1, 0, 1
in turn. By construction of the set Σj , one can easily check that Σ−1 (resp. Σ0

and Σ1) is contained in I(S) when d = 3n − 1 (resp. d = 3n and d = 3n + 1).
Thus by applying the sets

∑
j to Corollary 2.3, it suffices to show the following

statements:

(i) When d = 3n− 1,
(i.1) six quadratic equations in Σ are K-linearly independent,
(i.2) F[−1,0] /∈ 〈Σ〉,
(i.3) F[−1,1] /∈ 〈Σ ∪ {F[−1,0]}〉,
(i.4) F[−1,2] /∈ 〈Σ ∪ {F[−1,0], F[−1,1]}〉,
(i.5) G[−1,0] /∈ 〈Σ ∪ {F[−1,0], F[−1,1], F[−1,2]}〉,
(i.6) G[−1,k] /∈ 〈Σ ∪ {F[−1,0], F[−1,1], F[−1,2], G[−1,0], . . . , G[−1,k−1]}〉 for

1 ≤ k ≤ n− 2.

(ii) When d = 3n,
(ii.1) six quadratic equations in Σ are K-linearly independent,
(ii.2) F[0,0] /∈ 〈Σ〉,
(ii.3) F[0,1] /∈ 〈Σ ∪ {F[0,0]}〉,
(ii.4) G[0,0] /∈ 〈Σ ∪ {F[0,0], F[0,1]}〉,
(ii.5) G[0,k] /∈ 〈Σ ∪ {F[0,0], F[0,1], G[0,0], . . . , G[0,k−1]}〉 for 1 ≤ k ≤ n− 2.

(iii) When d = 3n+ 1,
(iii.1) six quadratic equations in Σ are K-linearly independent,
(iii.2) F[1,0] /∈ 〈Σ〉,
(iii.3) G[1,0] /∈ 〈Σ ∪ {F[1,0]}〉,
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(iii.4) G[1,k] /∈ 〈Σ ∪ {F[1,0], G[1,0], . . . , G[1,k−1]}〉 for 1 ≤ k ≤ n− 2.

It is obvious that six quadratic equations in Σ are K-linearly independent since
they are minimal generators of the ideal IS(1,3) of S(1, 3). Thus (i.1), (ii.1) and
(iii, 1) are proved. Note that the degrees of F[j,0], F[j,0], F[j,2] G[j,1], . . . , G[j,k]

are at least 3 and the degrees of G[j,k] for 0 ≤ k ≤ n− 2 are strictly increasing.
We shall finish the proof through the following two steps.
Step1: Suppose that F[j,0] is in the ideal 〈Σ〉 and F[j,i] is in the ideal 〈Σ ∪
{F[j,0], . . . , F[j,i−1]}〉 for i = 1, 2. Then F[j,0] and F[j,i] can be written as follow-
ings: 

F[j,0] =
6∑

t=1
A[j,t]Qt and

F[j,i] =
6∑

t=1
A[j,t]Qt +

i−1∑
s=0,

B[j,s]F[j,s] for i = 1, 2
(5)

where {A[j,t]} for t = 1, 2, 3, 4, 5, 6 are homogeneous polynomials of degree n−2
in R and {B[j,s]} for 0 ≤ s ≤ i− 1 are constants. Then for every points in the

set {[0, 0, X2, X3, 0, 0]} ⊂ P5, the equations (5) yields respectivelyX
n+j−1
2 X1−j

3 = 0 and

Xn+i+j−1
2 X1−j−i

3 =
i−1∑
s=0

B[j,s]X
n+s+j−1
2 X1−j−s

3 for i = 1, 2

which cannot occur. This shows that (i.2) ∼ (i.4), (ii.3), (ii.4) and (iii, 2).
Step2: Suppose that G[j,0] is contained in the ideal 〈Σ∪ {F[j,i]|0 ≤ i ≤ j − 1}〉
and G[j,k] is contained in the ideal

〈Σ ∪ {F[j,i]|0 ≤ i ≤ j − 1} ∪ {G[j,0], . . . , G[j,k−1]}〉
for 1 ≤ k ≤ n− 2. Then G[j,k] is written by the following combinations

G[j,0] =
6∑

t=1
A[j,t]Qt +

1−j∑
i=0,

B[j,i]F[j,i] and

G[j,k] =
6∑

t=1
A[j,t]Qt +

1−j∑
i=0,

B[j,i]F[j,i] +
k−1∑
s=0

C[j,s]G[j,s] for 1 ≤ k ≤ n− 2

(6)

where A[j,t], B[j,i] and C[j,s] are respectively the homogeneous polynomials of
degree n+ 2k+ j − 1, 2k+ j + 1 and 2(k− s) in R. For every points in the set
{[0, X1, 0, 0, 0, X5]} ⊂ P5, the formulas in (6) will be rewritten as

X3+j
1 Xn−2

5 = −B[j,0]X1X
n−1
5 and

X
3(k+1)+j
1 Xn−k−2

5 = −B[j,0]X1X
n−1
5

+
k−1∑
s=0

C[j,s]X
3(s+1)+j
1 Xn−s−2

5 for 1 ≤ k ≤ n− 2

(7)

It is clear that the equality X3+j
1 Xn−2

5 +B[j,0]X1X
n−1
5 = 0 cannot occur. Now

consider the powers of X5 in the second equality (7). The powers of X5 on the
right hand side are n− 1 and n− s− 2 for 0 ≤ s ≤ k − 1 and those are strictly
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bigger than its power n− k − 2 on the left hand side. This is impossible. This
complete the proof of (i.5), (i.6), (ii.4), (ii.5), (iii.3) and (iii.4). �

Finally, we finish this section by providing minimal generating sets of the
defining ideal of Cd ⊂ P5 for 5 ≤ d ≤ 7 by means of the Computer Algebra
System SINGULAR [2].

Example 2.5. Let Cd ⊂ P5, 5 ≤ d ≤ 7 be a curve stated as in (3). Then

(i) d = 5 and Σ ∪ {F[−1,0], F[−1,1], G[−1,0]} ∪ {X1X3 − X2
2} is a minimal

generating set of IC5 ,
(ii) d = 6 and Σ ∪ {F[0,0], F[0,1], G[0,0]} is a minimal generating set of IC6 ,

and
(iii) d = 7 and Σ ∪ {F[1,0], G[1,0]} is a minimal generating set of IC7

.
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