DOI QR코드

DOI QR Code

Status and Causes of Cyanobacterial Blooming in the Downstream of Jecheon Stream

제천천 하류 지역에서 녹조 발생 현황 및 원인 분석

  • Yu-Ho Jeon (Department of Environmental Engineering, Chungbuk National University) ;
  • Do-Hwan Kim (Department of Environmental Engineering, Chungbuk National University) ;
  • Kyoung-Hee Oh (Department of Environmental Engineering, Chungbuk National University) ;
  • Young-Cheol Cho (Department of Environmental Engineering, Chungbuk National University)
  • 전유호 (충북대학교 공과대학 환경공학과) ;
  • 김도환 (충북대학교 공과대학 환경공학과) ;
  • 오경희 (충북대학교 공과대학 환경공학과) ;
  • 조영철 (충북대학교 공과대학 환경공학과)
  • Received : 2021.12.21
  • Accepted : 2022.06.21
  • Published : 2022.06.30

Abstract

The occurrence of cyanobacterial blooming and the contaminant sources were analyzed in the downstream of Jecheon Stream, a tributary of Chungju Reservoir. The concentrations of chlorophyll a at the Myungseo Fishing Point (GPS; 37°03'25.5"N, 128°03'13.6"E) were 399.2 and 184.8 mg m-3 on October 18, 2015 and September 25, 2016, respectively, and the concentrations of total microcystins, a cyanobacterial toxin mainly produced by Microcystis, were 124.09 and 79.71 ㎍ L-1, respectively. The occurrence of cyanobacterial blooming at the downstream of Jecheon Stream was closely related to the water level of Chungju Reservoir. The cyanobacterial blooming occurred after the increase of water level in Chungju Reservoir, when the water body stagnated. As a result of analyzing National Water Quality Monitoring Data of the upper region of Jecheon Stream, the main source of pollutant was Jangpyeong Stream, the tributary of Jecheon Stream, and the discharge water from Jecheon Wastewater Treatment Plant located in Jangpyeong Stream was considered to be the most important source of contaminant.

충주호의 지류인 제천천 하류에서 주기적으로 발생하는 남조류 과다증식의 현황과 오염원을 분석하였다. 2015년 10월 18일과 2016년 9월 25일에 제천천 하류의 명서낚시터지점(GPS; 37°03'25.5"N, 128°03'13.6"E)에서 클로로필 a의 농도는 각각 399.2, 184.8 mg m-3이었으며, 남조류독소인 microcystins의 농도는 각각 124.09, 79.71 ㎍ L-1이었다. 명서낚시터 지점에서 남조류 과다증식은 충주호의 수위 및 수위변화와 매우 밀접한 관계가 있는 것으로 나타났다. 즉 수온이 남조류 성장에 적합한 조건에서 충주호 수위가 상승하여 수체가 정체되는 시기에 남조류 과다증식이 발생한다. 제천천에 위치한 환경부의 수질측정망 자료를 분석한 결과, 제천하수종말처리장이 위치한 장평천이 주요 오염 지류인 것으로 나타났다.

Keywords

Acknowledgement

본 연구는 원주지방환경청과 한강수계관리위원회의 연구비 지원에 받아 수행된 연구입니다.

References

  1. Ahn, C.Y. 2018. Prospect and roles of molecular ecogenetic techniques in the ecophysiological study of cyanobacteria. Korean Journal of Environment and Ecology 51: 16-28. https://doi.org/10.11614/KSL.2018.51.1.016
  2. Ahn, C.Y., H.S. Kim, B.D. Yoon and H.M. Oh. 2003. Influence of rainfall on cyanobacterial bloom in Daechung Reservoir. Korean Journal of Ecology and Environment 36: 413-419.
  3. Berg, M. and M. Sutula. 2015. Factors Affecting the Growth of Cyanobacteria with Special Emphasis on the Sacramehto-San Joaquin Delta. Southern California Coastal Water Research Project Technical Report 869, California, USA.
  4. Bouaicha, N., C.O. Miles, D.G. Beach, Z. Labidi, A. Djabri, N.Y. Benayache and T. Nguyen-Quang. 2019. Structural diversity, characterization and toxicology of microcystins. Toxins 11(12): 714.
  5. Chang, M., S. Teurlincx, J.H. Janse, H.W. Paerl, W.M. Mooij and A.B. Janssen. 2020. Exploring how cyanobacterial traits affect nutrient loading thresholds in Shallow Lakes: a modelling approach. Water 12: 2467.
  6. Christiansen, G., W.Y. Yoshida, J.F. Blom, C. Portmann, K. Gademann, T. Hemscheidt and R. Kurmayer. 2008. Isolation and structure determination of two microcystins and sequence comparison of the mcyABC adenylation domains in Planktothrix species. Journal of Natural Products 71: 1881-1886. https://doi.org/10.1021/np800397u
  7. Dai, R., P. Wang, P. Jia, Y. Zhang, X. Chu and Y. Wang. 2016. A review on factors affecting microcystins production by algae in aquatic environments. World Journal of Microbiology and Biotechnology 32(3): 1-7. https://doi.org/10.1007/s11274-015-1971-6
  8. Facey, J.A., T.A. Rogers, S.C. Apte and S.M. Mitrovic. 2021. Micronutrients as growth limiting factors in cyanobacterial blooms; a survey of freshwaters in South East Australia. Aquatic Sciences 83: 1-11. https://doi.org/10.1007/s00027-020-00757-5
  9. Funari, E. and E. Testai. 2008. Human health risk assessment related to cyanotoxins exposure. Critical Reviews in Toxicology 38: 97-125. https://doi.org/10.1080/10408440701749454
  10. HRWMC (Han River Watershed Management Committee). 2018. Investigation of Water Pollution Characteristics and Countermeasures at the Jecheon Stream (II). Han River Watershed Management Committee, Hanam, Republic of Korea.
  11. Jung, T.S. and J.H. Hwang. 2003. Modeling of water circulation and suspended sediment transport in Lake Daecheong. Journal of the Korean Society for Marine Environment & Energy 6: 67-82.
  12. Kim, B., H.S. Kim, H.D. Park, K. Choi and J.G. Park. 1999. Microcystin content of cyanobacterial cells in Korean reservoirs and their toxicity. Korean Journal of Limnology 32: 288-294.
  13. Kim, G.Y. 2001. A Study on the Water Quality Management for Stream and Lake. MS thesis, Yonsei University, Republic of Korea.
  14. Kim, H.S., B. Kim, H.D. Park, Y. Katagami and S.J. Hwang. 2001. Dynamics of cyanobacterial toxins in the downstream river of Lake Suwa. Korean Journal of Limnology 34: 45-53.
  15. Kim, S.J., S.W. Chung, H.S. Park, Y.C. Cho, H.S. Lee and Y.J. Park. 2019. Analysis of environmental factors associated with cyanobacteria dominance in Baekje Weir and Juksan Weir. Journal of Korean Society on Water Environment 35: 257-270. https://doi.org/10.15681/KSWE.2019.35.3.257
  16. Kotak, B.G., A.K.Y. Lam, E.E. Prepas and S.E. Hrudey. 2000. Role of chemical and physical variables in regulating microcystin-LR concentration in phytoplankton of eutrophic lakes. Canadian Journal of Fisheries and Aquatic Sciences 57: 1584-1593. https://doi.org/10.1139/f00-091
  17. Kwak, S. 2005. Limnological and Ecological Study of Lake Chungju. MS thesis, Samyook University, Republic of Korea.
  18. Lee, J.J., J. Lee, H.K. Park, J. Moon, H. Kim, J. Seo, H. Lee and J. Park. 2010. Assessment of microcystin analysis methods for convenient monitoring, p. 643-644. In: Proceeding of the 2010 Autumn Co-Conference of the Korean Society of Water and Wastewater and Korean Society on Water Environment. Korean Society of Water and Wastewater and Korean Society on Water Environment.
  19. Luo, W., X. Luo, J. Lu and M. Bo. 2022. Contribution of the reservoir backflow to the eutrophication of its tributary: a case study of the Xiangxi River, China. Hydrology Research 53: 467-482. https://doi.org/10.2166/nh.2022.122
  20. Ma, J. and P. Wang. 2021. Effects of rising atmospheric CO2 levels on physiological response of cyanobacteria and cyanobacterial bloom development: A review. Science of The Total Environment 754: 141889.
  21. Mitrovic, S.M., L. Hardwick and F. Dorani. 2011. Use of flow management to mitigate cyanobacterial blooms in the Lower Darling River, Australia. Journal of Plankton Research 33: 229-241. https://doi.org/10.1093/plankt/fbq094
  22. MOE (Ministry of Environment, Korea). 2016. Standard Methods for Analysis of Water Pollution. Ministry of Environment, Sejong, Republic of Korea.
  23. Na, E.-H. and S.-S. Park. 2005. A three-dimensional modeling study of Lake Paldang for spatial and temporal distributions of temperature, current, residence time, and spreading pattern of incoming flows. Journal of Korean Society of Environmental Engineers 27: 978-988.
  24. Nam, W.K., I.W. Choi, Y.Y. Kim, H.S. Lim, M.J. Kim, C.K. Lim, S.H. Kim and T.H. Kim. 2017. A plan to improve Bokha Stream quality using water quality and pollution source analyses. Journal of the Korean Society for Environmental Analysis 20: 174-182.
  25. Newell, S.E., T.W. Davis, T.H. Johengen, D. Gossiaux, A. Burtner, D. Palladino and M.J. McCarthy. 2019. Reduced forms of nitrogen are a driver of non-nitrogen-fixing harmful cyanobacterial blooms and toxicity in Lake Erie. Harmful Algae 81: 86-93. https://doi.org/10.1016/j.hal.2018.11.003
  26. NIER (National Institute of Environmental Research). 2020. Manual for Operating the Algae Warning System. National Institute of Environmental Research, Incheon, Republic of Korea.
  27. Oh, K.H., D.H. Jeong, S.H. Shin and Y.C. Cho. 2012. Simultaneous quantification of cyanobacteria and Microcystis spp. using real-time PCR. Journal of Microbiology and Biotechnology 22: 248-255. https://doi.org/10.4014/jmb.1109.09051
  28. Oh, K.H., Y.J. Kim and Y.C. Cho. 2015. Effects of sediments on the growth of algae at Chusori Area in Daechung Reservoir. Journal of Korean Society on Water Environment 31: 533-542. https://doi.org/10.15681/KSWE.2015.31.5.533
  29. Orihel, D.M., D.F. Bird, M. Brylinsky, H. Chen, D.B. Donald, D.Y. Huang, A. Giani, D. Kinniburgh, H. Kling, B.G. Kotak, P.R. Leavitt, C.C. Nielsen, S. Reedyk, R.C. Rooney, S.B. Watson, R.W. Zurawell and R.D. Vinebrooke. 2012. High microcystin concentrations occur only at low nitrogen-to-phosphorus ratios in nutrient-rich Canadian lakes. Canadian Journal of Fisheries and Aquatic Sciences 69(9): 1457-1462. https://doi.org/10.1139/f2012-088
  30. Park, H.D., B. Kim, E. Kim and T. Okino. 1998. Hepatotoxic microcystins and neurotoxic anatoxin-a in cyanobacterial blooms from Korean lakes. Environmental Toxicology and Water Quality 13: 225-234. https://doi.org/10.1002/(SICI)1098-2256(1998)13:3<225::AID-TOX4>3.0.CO;2-9
  31. Park, H.K. 2007. Survey method relating freshwater phytoplankton for the management of water resources. Journal of Korean Society of Environmental Engineers 29: 593-609.
  32. Rinehart, K.L., M. Namikoshi and B.W. Choi. 1994. Structure and biosynthesis of toxins from blue-green algae (cyanobacteria). Journal of Applied Phycology 6: 159-176. https://doi.org/10.1007/BF02186070
  33. Schindler, D.W., R.E. Hecky, D.L. Findlay, M.P. Stainton, B.R. Parker, M.J. Paterson, K.G. Beaty, M. Lyng and S.E.M. Kasian. 2008. Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37-year whole-ecosystem experiment. Proceedings of the National Academy of Sciences 105: 11254-11258. https://doi.org/10.1073/pnas.0805108105
  34. Shin, J.-K. and S.-J. Hwang. 2017. Dynamics of Phosphorus-Turbid Water Outflow and Limno-Hydrological Effects on Hypolimnetic Effluents Discharging by Hydropower Electric Generation in a Large Dam Reservoir (Daecheong), Korea. Korean Journal of Ecology and Environment 50: 1-15. https://doi.org/10.11614/KSL.2017.50.1.001
  35. Welker, M., M. Brunke, K. Preussel, I. Lippert and H. von Dohren. 2004. Diversity and distribution of Microcystis (cyanobacteria) oligopeptide chemotypes from natural communities studied by single-colony mass spectrometry. Microbiology 150: 1785-1796. https://doi.org/10.1099/mic.0.26947-0
  36. Zhang, H., R. Chen, F. Li and L. Chen. 2015. Effect of flow rate on environmental variables and phytoplankton dynamics: results from field enclosures. Chinese Journal of Oceanology and Limnology 33: 430-438. https://doi.org/10.1007/s00343-015-4063-4
  37. Znachor, P., T. Jurczak, J. Komarkova, J. Jezberova, J. Mankiewicz, K. Kastovska and E. Zapomĕlova. 2006. Summer changes in cyanobacterial bloom composition and microcystin concentration in eutrophic Czech reservoirs. Environmental Toxicology 21: 236-243. https://doi.org/10.1002/tox.20176
  38. Zurawell, R.W., H. Chen, J.M. Burke and E.E. Prepas. 2005. Hepatotoxic cyanobacteria: a review of the biological importance of microcystins in freshwater environments. Journal of Toxicology and Environmental Health, Part B 8: 1-37. https://doi.org/10.1080/10937400590889412