Acknowledgement
With deep sadness we announce the sudden death of our colleague Dr. Ik-Soon Jang, who started and led this Chelidonium majus project. All authors will remember him as our scientific leader, friend, and colleague. This paper was supported by Wonkwang University in 2020.
References
- Zhou Q, Liu Y, Wang X, Di X. 2012. Microwave-assisted extraction in combination with capillary electrophoresis for rapid determination of isoquinoline alkaloids in Chelidonium majus L. Talanta 99: 932-938. https://doi.org/10.1016/j.talanta.2012.07.061
- El-Readi MZ, Eid S, Ashour ML, Tahrani A, Wink M. 2013. Modulation of multidrug resistance in cancer cells by chelidonine and Chelidonium majus alkaloids. Phytomedicine 20: 282-294. https://doi.org/10.1016/j.phymed.2012.11.005
- Van Wyk B-E, Wink M. 2004. Medicinal plants of the world : an illustrated scientific guide to important medicinal plants and their uses, pp. 102. 1st Ed. Timber Press, Portland.
- Kohn L. 2005. Health and long life the Chinese way, pp. 131. 1st Ed. Three Pines Press, Cambridge, MA., USA.
- Deljanin M, Nikolic M, Baskic D, Todorovic D, Djurdjevic P, Zaric M, et al. 2016. Chelidonium majus crude extract inhibits migration and induces cell cycle arrest and apoptosis in tumor cell lines. J. Ethnopharmacol. 190: 362-371. https://doi.org/10.1016/j.jep.2016.06.056
- Herrmann R, Roller J, Polednik C, Schmidt M. 2018. Effect of chelidonine on growth, invasion, angiogenesis and gene expression in head and neck cancer cell lines. Oncol. Lett. 16: 3108-3116.
- Capistrano IR, Wouters A, Lardon F, Gravekamp C, Apers S, Pieters L. 2015. In vitro and in vivo investigations on the antitumour activity of Chelidonium majus. Phytomedicine 22: 1279-1287. https://doi.org/10.1016/j.phymed.2015.10.013
- Xie YJ, Gao WN, Wu QB, Yao XJ, Jiang ZB, Wang YW, et al. 2020. Chelidonine selectively inhibits the growth of gefitinib-resistant non-small cell lung cancer cells through the EGFR-AMPK pathway. Pharmacol. Res. 159: 104934. https://doi.org/10.1016/j.phrs.2020.104934
- Havelek R, Seifrtova M, Kralovec K, Krocova E, Tejkalova V, Novotny I, et al. 2016. Comparative cytotoxicity of chelidonine and homochelidonine, the dimethoxy analogues isolated from Chelidonium majus L. (Papaveraceae), against human leukemic and lung carcinoma cells. Phytomedicine 23: 253-266. https://doi.org/10.1016/j.phymed.2016.01.001
- Panzer A, Joubert AM, Bianchi PC, Hamel E, Seegers JC. 2001. The effects of chelidonine on tubulin polymerisation, cell cycle progression and selected signal transmission pathways. Eur. J. Cell Biol. 80: 111-118. https://doi.org/10.1078/0171-9335-00135
- Colombo ML, Bosisio E. 1996. Pharmacological activities of Chelidonium majus L. (Papaveraceae). Pharmacol. Res. 33: 127-134. https://doi.org/10.1006/phrs.1996.0019
- Gilca M, Gaman L, Panait E, Stoian I, Atanasiu V. 2010. Chelidonium majus--an integrative review: traditional knowledge versus modern findings. Forsch. Komplementmed. 17: 241-248. https://doi.org/10.1159/000321397
- Kokoska L, Polesny Z, Rada V, Nepovim A, Vanek T. 2002. Screening of some Siberian medicinal plants for antimicrobial activity. J. Ethnopharmacol. 82: 51-53. https://doi.org/10.1016/S0378-8741(02)00143-5
- Lee YC, Kim SH, Roh SS, Choi HY, Seo YB. 2007. Suppressive effects of Chelidonium majus methanol extract in knee joint, regional lymph nodes, and spleen on collagen-induced arthritis in mice. J. Ethnopharmacol. 112: 40-48. https://doi.org/10.1016/j.jep.2007.01.033
- Noureini SK, Wink M. 2009. Transcriptional down regulation of hTERT and senescence induction in HepG2 cells by chelidonine. World J. Gastroenterol. 15: 3603-3610. https://doi.org/10.3748/wjg.15.3603
- Lu JJ, Bao JL, Chen XP, Huang M, Wang YT. 2012. Alkaloids isolated from natural herbs as the anticancer agents. Evid. Based Complement. Alternat. Med. 2012: 485042.
- Kim O, Hwangbo C, Kim J, Li DH, Min BS, Lee JH. 2015. Chelidonine suppresses migration and invasion of MDA-MB-231 cells by inhibiting formation of the integrin-linked kinase/PINCH/alpha-parvin complex. Mol. Med. Rep. 12: 2161-2168. https://doi.org/10.3892/mmr.2015.3621
- Noureini SK, Esmaili H. 2014. Multiple mechanisms of cell death induced by chelidonine in MCF-7 breast cancer cell line. Chem. Biol. Interact. 223: 141-149. https://doi.org/10.1016/j.cbi.2014.09.013
- Lee KS, Kim SW, Lee HS. 2018. Orostachys japonicus induce p53-dependent cell cycle arrest through the MAPK signaling pathway in OVCAR-3 human ovarian cancer cells. Food Sci. Nutr. 6: 2395-2401. https://doi.org/10.1002/fsn3.836
- Noureini SK, Esmaeili H, Abachi F, Khiali S, Islam B, Kuta M, et al. 2017. Selectivity of major isoquinoline alkaloids from Chelidonium majus towards telomeric G-quadruplex: A study using a transition-FRET (t-FRET) assay. Biochim. Biophys. Acta Gen. Subj. 1861: 2020-2030. https://doi.org/10.1016/j.bbagen.2017.05.002
- Zhang LQ, Lv RW, Qu XD, Chen XJ, Lu HS, Wang Y. 2017. Aloesin suppresses cell growth and metastasis in ovarian cancer SKOV3 cells through the inhibition of the MAPK signaling pathway. Anal. Cell Pathol. (Amst). 2017: 8158254. https://doi.org/10.1155/2017/8158254
- Momenimovahed Z, Tiznobaik A, Taheri S, Salehiniya H. 2019. Ovarian cancer in the world: epidemiology and risk factors. Int. J. Womens Health 11: 287-299. https://doi.org/10.2147/IJWH.S197604
- Cho KR. 2009. Ovarian cancer update: lessons from morphology, molecules, and mice. Arch. Pathol. Lab Med. 133: 1775-1781. https://doi.org/10.5858/133.11.1775
- Karges DE. 2005. Current concepts for treatment of the painful flatfoot in the elderly. Mo. Med. 102: 236-239.
- Salzberg M, Thurlimann B, Bonnefois H, Fink D, Rochlitz C, von Moos R, et al. 2005. Current concepts of treatment strategies in advanced or recurrent ovarian cancer. Oncology 68: 293-298. https://doi.org/10.1159/000086967
- Jiang X, Kim KJ, Ha T, Lee SH. 2016. Potential dual role of activating transcription factor 3 in colorectal cancer. Anticancer Res. 36: 509-516.
- Liang G, Wolfgang CD, Chen BP, Chen TH, Hai T. 1996. ATF3 gene. Genomic organization, promoter, and regulation. J. Biol. Chem. 271: 1695-1701. https://doi.org/10.1074/jbc.271.3.1695
- Hai T, Hartman MG. 2001. The molecular biology and nomenclature of the activating transcription factor/cAMP responsive element binding family of transcription factors: activating transcription factor proteins and homeostasis. Gene 273: 1-11. https://doi.org/10.1016/S0378-1119(01)00551-0
- Thompson MR, Xu D, Williams BR. 2009. ATF3 transcription factor and its emerging roles in immunity and cancer. J. Mol. Med (Berl) 87: 1053-1060. https://doi.org/10.1007/s00109-009-0520-x
- Wang Z, Yan C. 2016. Emerging roles of ATF3 in the suppression of prostate cancer. Mol. Cell. Oncol. 3: e1010948. https://doi.org/10.1080/23723556.2015.1010948
- Yin X, Dewille JW, Hai T. 2008. A potential dichotomous role of ATF3, an adaptive-response gene, in cancer development. Oncogene 27: 2118-2127. https://doi.org/10.1038/sj.onc.1210861
- Bassi C, Li YT, Khu K, Mateo F, Baniasadi PS, Elia A, et al. 2016. The acetyltransferase Tip60 contributes to mammary tumorigenesis by modulating DNA repair. Cell Death Differ. 23: 1198-1208. https://doi.org/10.1038/cdd.2015.173
- Jang SM, Kim JW, Kim CH, An JH, Johnson A, Song PI, et al. 2015. KAT5-mediated SOX4 acetylation orchestrates chromatin remodeling during myoblast differentiation. Cell Death Dis. 6: e1857. https://doi.org/10.1038/cddis.2015.190
- Litvinov IV, Netchiporouk E, Cordeiro B, Zargham H, Pehr K, Gilbert M, et al. 2014. Ectopic expression of embryonic stem cell and other developmental genes in cutaneous T-cell lymphoma. Oncoimmunology 3: e970025. https://doi.org/10.4161/21624011.2014.970025
- Mattera L, Escaffit F, Pillaire MJ, Selves J, Tyteca S, Hoffmann JS, et al. 2009. The p400/Tip60 ratio is critical for colorectal cancer cell proliferation through DNA damage response pathways. Oncogene 28: 1506-1517. https://doi.org/10.1038/onc.2008.499
- Pandey AK, Zhang Y, Zhang S, Li Y, Tucker-Kellogg G, Yang H, et al. 2015. TIP60-miR-22 axis as a prognostic marker of breast cancer progression. Oncotarget 6: 41290-41306. https://doi.org/10.18632/oncotarget.5636
- Judes G, Rifai K, Ngollo M, Daures M, Bignon YJ, Penault-Llorca F, et al. 2015. A bivalent role of TIP60 histone acetyl transferase in human cancer. Epigenomics 7: 1351-1363. https://doi.org/10.2217/epi.15.76
- Huang H, Tindall DJ. 2007. Dynamic FoxO transcription factors. J. Cell Sci. 120: 2479-2487. https://doi.org/10.1242/jcs.001222
- Maiese K, Chong ZZ, Hou J, Shang YC. 2009. The "O" class: crafting clinical care with FoxO transcription factors. Adv. Exp. Med. Biol. 665: 242-260. https://doi.org/10.1007/978-1-4419-1599-3_18
- Guo S, Sonenshein GE. 2004. Forkhead box transcription factor FOXO3a regulates estrogen receptor alpha expression and is repressed by the Her-2/neu/phosphatidylinositol 3-kinase/Akt signaling pathway. Mol. Cell. Biol. 24: 8681-8690. https://doi.org/10.1128/MCB.24.19.8681-8690.2004
- Fernandez de Mattos S, Villalonga P, Clardy J, Lam EW. 2008. FOXO3a mediates the cytotoxic effects of cisplatin in colon cancer cells. Mol. Cancer Ther. 7: 3237-3246. https://doi.org/10.1158/1535-7163.MCT-08-0398
- Shukla S, Bhaskaran N, Babcook MA, Fu P, Maclennan GT, Gupta S. 2014. Apigenin inhibits prostate cancer progression in TRAMP mice via targeting PI3K/Akt/FoxO pathway. Carcinogenesis 35: 452-460. https://doi.org/10.1093/carcin/bgt316
- Yu DS, Chen YT, Wu CL, Yu CP. 2017. Expression of p-FOXO3/FOXO3 in bladder cancer and its correlation with clinicopathology and tumor recurrence. Int. J. Clin. Exp. Pathol. 10: 11069-11074.
- Taylor S, Lam M, Pararasa C, Brown JE, Carmichael AR, Griffiths HR. 2015. Evaluating the evidence for targeting FOXO3a in breast cancer: a systematic review. Cancer Cell Int. 15: 1. https://doi.org/10.1186/s12935-015-0156-6
- Jang HJ, Yang KE, Oh WK, Lee SI, Hwang IH, Ban KT, et al. 2019. Nectandrin B-mediated activation of the AMPK pathway prevents cellular senescence in human diploid fibroblasts by reducing intracellular ROS levels. Aging (Albany NY). 11: 3731-3749. https://doi.org/10.18632/aging.102013
- Park S, Kim JM, Shin W, Han SW, Jeon M, Jang HJ, et al. 2018. BTNET : boosted tree based gene regulatory network inference algorithm using time-course measurement data. BMC Syst. Biol. 12: 20. https://doi.org/10.1186/s12918-018-0547-0
- Wilson AP. 1984. Characterization of a cell line derived from the ascites of a patient with papillary serous cystadenocarcinoma of the ovary. J. Natl. Cancer Inst. 72: 513-521.
- Mikolajczak PL, Kedzia B, Ozarowski M, Kujawski R, Bogacz A, Bartkowiak-Wieczorek J, et al. 2015. Evaluation of anti-inflammatory and analgesic activities of extracts from herb of Chelidonium majus L. Cent Eur. J. Immunol. 40: 400-410.
- Isolani ME, Pietra D, Balestrini L, Borghini A, Deri P, Imbriani M, et al. 2012. The in vivo effect of chelidonine on the stem cell system of planarians. Eur. J. Pharmacol. 686: 1-7. https://doi.org/10.1016/j.ejphar.2012.03.036
- Xie JJ, Xie YM, Chen B, Pan F, Guo JC, Zhao Q, et al. 2014. ATF3 functions as a novel tumor suppressor with prognostic significance in esophageal squamous cell carcinoma. Oncotarget 5: 8569-8582. https://doi.org/10.18632/oncotarget.2322
- Huang X, Li X, Guo B. 2008. KLF6 induces apoptosis in prostate cancer cells through up-regulation of ATF3. J. Biol. Chem. 283: 29795-29801. https://doi.org/10.1074/jbc.M802515200
- Zhang X, Tang N, Hadden TJ, Rishi AK. 2011. Akt, FoxO and regulation of apoptosis. Biochim. Biophys. Acta. 1813: 1978-1986. https://doi.org/10.1016/j.bbamcr.2011.03.010
- Li Z, Zhang H, Chen Y, Fan L, Fang J. 2012. Forkhead transcription factor FOXO3a protein activates nuclear factor kappaB through B-cell lymphoma/leukemia 10 (BCL10) protein and promotes tumor cell survival in serum deprivation. J. Biol. Chem. 287: 17737-17745. https://doi.org/10.1074/jbc.M111.291708
- Gong C, Khoo US. 2013. Nuclear localization marker of FOXO3a: Can it be used to predict doxorubicin response? Front. Oncol. 3: 149. https://doi.org/10.3389/fonc.2013.00149
- Das TP, Suman S, Alatassi H, Ankem MK, Damodaran C. 2016. Inhibition of AKT promotes FOXO3a-dependent apoptosis in prostate cancer. Cell Death Dis. 7: e2111. https://doi.org/10.1038/cddis.2015.403
- Sunters A, Madureira PA, Pomeranz KM, Aubert M, Brosens JJ, Cook SJ, et al. 2006. Paclitaxel-induced nuclear translocation of FOXO3a in breast cancer cells is mediated by c-Jun NH2-terminal kinase and Akt. Cancer Res. 66: 212-220. https://doi.org/10.1158/0008-5472.CAN-05-1997
- Wilk A, Urbanska K, Grabacka M, Mullinax J, Marcinkiewicz C, Impastato D, et al. 2012. Fenofibrate-induced nuclear translocation of FoxO3A triggers Bim-mediated apoptosis in glioblastoma cells in vitro. Cell Cycle. 11: 2660-2671. https://doi.org/10.4161/cc.21015
- Bowman KR, Kim JH, Lim CS. 2019. Narrowing the field: cancer-specific promoters for mitochondrially-targeted p53-BH3 fusion gene therapy in ovarian cancer. J. Ovarian Res. 12: 38. https://doi.org/10.1186/s13048-019-0514-4
- Tang Y, Luo J, Zhang W, Gu W. 2006. Tip60-dependent acetylation of p53 modulates the decision between cell-cycle arrest and apoptosis. Mol. Cell. 24: 827-839. https://doi.org/10.1016/j.molcel.2006.11.021
- Imamura Y, Mukohara T, Shimono Y, Funakoshi Y, Chayahara N, Toyoda M, et al. 2015. Comparison of 2D- and 3D-culture models as drug-testing platforms in breast cancer. Oncol. Rep. 33: 1837-1843. https://doi.org/10.3892/or.2015.3767
- Nowacka M, Sterzynska K, Andrzejewska M, Nowicki M, Januchowski R. 2021. Drug resistance evaluation in novel 3D in vitro model. Biomed. Pharmacother. 138: 111536. https://doi.org/10.1016/j.biopha.2021.111536