DOI QR코드

DOI QR Code

Discovery of Chitin Deacetylase Inhibitors through Structure-Based Virtual Screening and Biological Assays

  • Liu, Yaodong (Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University) ;
  • Ahmed, Sibtain (University of California San Diego) ;
  • Fang, Yaowei (Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University) ;
  • Chen, Meng (Lianyungang Inspection and Testing Center for Food and Drug Control) ;
  • An, Jia (Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University) ;
  • Yang, Guang (Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University) ;
  • Hou, Xiaoyue (Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University) ;
  • Lu, Jing (Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University) ;
  • Ye, Qinwen (Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University) ;
  • Zhu, Rongjun (Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University) ;
  • Liu, Qitong (Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University) ;
  • Liu, Shu (Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University)
  • Received : 2022.01.11
  • Accepted : 2022.02.03
  • Published : 2022.04.28

Abstract

Chitin deacetylase (CDA) inhibitors were developed as novel antifungal agents because CDA participates in critical fungal physiological and metabolic processes and increases virulence in soil-borne fungal pathogens. However, few CDA inhibitors have been reported. In this study, 150 candidate CDA inhibitors were selected from the commercial Chemdiv compound library through structure-based virtual screening. The top-ranked 25 compounds were further evaluated for biological activity. The compound J075-4187 had an IC50 of 4.24 ± 0.16 µM for AnCDA. Molecular docking calculations predicted that compound J075-4187 binds to the amino acid residues, including active sites (H101, D48). Furthermore, compound J075-4187 inhibited food spoilage fungi and plant pathogenic fungi, with minimum inhibitory concentration (MIC) at 260 ㎍/ml and minimum fungicidal concentration (MFC) at 520 ㎍/ml. Therefore, compound J075-4187 is a good candidate for use in developing antifungal agents for fungi control.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Grant no. 31772016), Jiangsu Province Marine Science and Technology Innovation Project (HY2018-10), the Priority Academic Program Development of Jiangsu Higher Education Institutions, Project "333" of Jiangsu Province, Open-end Funds of Jiangsu Key Laboratory of Marine Bioresources and Environment (SH20191204), and Jiangsu Postgraduate Practice Innovation Program (SJCX20_1303).

References

  1. Brown ED, Wright GD. 2016. Antibacterial drug discovery in the resistance era. Nature 529: 336-343. https://doi.org/10.1038/nature17042
  2. Torres-Garcia S, Yaseen I, Shukla M, Audergon P, White SA, Pidoux AL, et al. 2020. Epigenetic gene silencing by heterochromatin primes fungal resistance. Nature 585: 453-458. https://doi.org/10.1038/s41586-020-2706-x
  3. Alghuthaymi MA, Hassan AA, Kalia A, Sayed El Ahl RMH, El Hamaky AAM, Oleksak P, et al. 2021. Antifungal nano-therapy in veterinary medicine: Current status and future prospects. J. Fungi (Basel) 7: 419. https://doi.org/10.3390/jof7060419
  4. de Oliveira Filho JG, Silva GDC, Cipriano L, Gomes M, Egea MB. 2021. Control of postharvest fungal diseases in fruits using external application of RNAi. J. Food Sci. 86: 3341-3348. https://doi.org/10.1111/1750-3841.15816
  5. Fisher MC, Hawkins NJ, Sanglard D, Gurr SJ. 2018. Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science 360: 739-742. https://doi.org/10.1126/science.aap7999
  6. Baym M, Stone LK, Kishony R. 2016. Multidrug evolutionary strategies to reverse antibiotic resistance. Science 351: aad3292. https://doi.org/10.1126/science.aad3292
  7. Islam MT, Croll D, Gladieux P, Soanes DM, Persoons A, Bhattacharjee P, et al. 2016. Emergence of wheat blast in Bangladesh was caused by a South American lineage of Magnaporthe oryzae. BMC Biol. 14: 84. https://doi.org/10.1186/s12915-016-0309-7
  8. Robbins N, Caplan T, Cowen LE. 2017. Molecular evolution of antifungal drug resistance. Annu. Rev. Microbiol. 71: 753-775. https://doi.org/10.1146/annurev-micro-030117-020345
  9. Chowdhary A, Sharma C, Meis JF. 2017. Candida auris: a rapidly emerging cause of hospital-acquired multidrug-resistant fungal infections globally. PLoS Pathog. 13: e1006290. https://doi.org/10.1371/journal.ppat.1006290
  10. Chaudhary AS. 2016. A review of global initiatives to fight antibiotic resistance and recent antibiotics' discovery. Acta Pharm. Sin. B. 6: 552-556. https://doi.org/10.1016/j.apsb.2016.06.004
  11. Giraldo MC, Valent B. 2013. Filamentous plant pathogen effectors in action. Nat. Rev. Microbiol. 11: 800-814. https://doi.org/10.1038/nrmicro3119
  12. Vallieres C, Avery SV. 2017. Metal-based combinations that target protein synthesis by fungi. Adv. Microb. Physiol. 70: 105-121. https://doi.org/10.1016/bs.ampbs.2017.01.001
  13. Waterer G. 2021. Advances in antifungal therapies. Mycopathologia 186: 665-672. https://doi.org/10.1007/s11046-021-00560-2
  14. Xiang H, Yang P, Wang L, Li J, Wang T, Xue J, et al. 2021. Isovitexin is a direct inhibitor of Staphylococcus aureus coagulase. J. Microbiol. Biotechnol. 31: 1350-1357. https://doi.org/10.4014/jmb.2105.05013
  15. Kim JH, Vinh LB, Hur M, Koo SC, Park WT, Moon YH, et al. 2021. Inhibitory activity of 4-O-benzoyl-3'-O-(OMethylsinapoyl) sucrose from Polygala tenuifolia on Escherichia coli β-glucuronidase. J. Microbiol. Biotechnol. 31: 1576-1582. https://doi.org/10.4014/jmb.2108.08004
  16. Liu Q, Miao Y, Wang X, Lv G, Peng Y, Li K, et al. 2020. Structure-based virtual screening and biological evaluation of novel non-bisphosphonate farnesyl pyrophosphate synthase inhibitors. Eur. J. Med. Chem. 186: 111905. https://doi.org/10.1016/j.ejmech.2019.111905
  17. Reddy RH, Kim H, Cha S, Lee B, Kim YJ. 2017. Structure-based virtual screening of protein tyrosine phosphatase inhibitors: Significance, challenges, and solutions. J. Microbiol. Biotechnol. 27: 878-895. https://doi.org/10.4014/jmb.1701.01079
  18. Chen Q, Chen W, Kumar A, Jiang X, Janezic M, Zhang KYJ, et al. 2021. Crystal structure and structure-based discovery of inhibitors of the nematode chitinase CeCht1. J. Agric. Food Chem. 69: 3519-3526. https://doi.org/10.1021/acs.jafc.1c00162
  19. Wang Y, He X, Li C, Ma Y, Xue W, Hu B, et al. 2020. Carvedilol serves as a novel CYP1B1 inhibitor, a systematic drug repurposing approach through structure-based virtual screening and experimental verification. Eur. J. Med. Chem. 193: 112235. https://doi.org/10.1016/j.ejmech.2020.112235
  20. Tang Z, Fu X, Huang L, Wang H, Wang G. 2020. Combining CBP pharmacophore construction and molecular docking to search for potential competitive inhibitors of chitin deacetylase. doi:10.21203/rs.3.rs-99552/v1.
  21. Grifoll-Romero L, Pascual S, Aragunde H, Biarnes X, Planas A. 2018. Chitin deacetylases: structures, specificities, and biotech applications. Polymers 10: 352. https://doi.org/10.3390/polym10040352
  22. Aragunde H, Biarnes X, Planas A. 2018. Substrate recognition and specificity of chitin deacetylases and related family 4 carbohydrate esterases. Int. J. Mol. Sci. 19: 412. https://doi.org/10.3390/ijms19020412
  23. Rao FV, Houston DR, Boot RG, Aerts JM, Hodkinson M, Adams DJ, et al. 2005. Specificity and affinity of natural product cyclopentapeptide inhibitors against A. fumigatus, human, and bacterial chitinases. Chem. Biol. 12: 65-76. https://doi.org/10.1016/j.chembiol.2004.10.013
  24. Gao F, Zhang BS, Zhao JH, Huang JF, Jia PS, Wang S, et al. 2019. Deacetylation of chitin oligomers increases virulence in soil-borne fungal pathogens. Nat. Plants 5: 1167-1176. https://doi.org/10.1038/s41477-019-0527-4
  25. Rizzi YS, Happel P, Lenz S, Urs MJ, Bonin M, Cord-Landwehr S, et al. 2021. Chitosan and chitin deacetylase activity are necessary for development and virulence of ustilago maydis. mBio 12: e03419-20.
  26. Sun R, Liu C, Zhang H, Wang Q. 2015. Benzoylurea chitin synthesis inhibitors. J. Agric. Food Chem. 63: 6847-6865. https://doi.org/10.1021/acs.jafc.5b02460
  27. Dong Y, Jiang X, Liu T, Ling Y, Yang Q, Zhang L, et al. 2018. Structure-based virtual screening, compound synthesis, and bioassay for the design of chitinase inhibitors. J. Agric. Food Chem. 66: 3351-3357. https://doi.org/10.1021/acs.jafc.8b00017
  28. Yuan P, Jiang X, Wang S, Shao X, Yang Q, Qian X. 2020. X-ray structure and molecular docking guided discovery of novel chitinase inhibitors with a scaffold of dipyridopyrimidine-3-carboxamide. J. Agric. Food Chem. 68: 13584-13593. https://doi.org/10.1021/acs.jafc.0c03742
  29. Dietrich RC, Alberca LN, Ruiz MD, Palestro PH, Carrillo C, Talevi A, et al. 2018. Identification of cisapride as new inhibitor of putrescine uptake in Trypanosoma cruzi by combined ligand- and structure-based virtual screening. Eur. J. Med. Chem. 149: 22-29. https://doi.org/10.1016/j.ejmech.2018.02.006
  30. Jaworska MM. 2011. Chitin deacetylase product inhibition. Biotechnol. J. 6: 244-247. https://doi.org/10.1002/biot.201000245
  31. Zhao Y, Cheng G, Hao H, Pan Y, Liu Z, Dai M, et al. 2016. In vitro antimicrobial activities of animal-used quinoxaline 1,4-di-N-oxides against mycobacteria, mycoplasma and fungi. BMC Vet. Res. 12: 186. https://doi.org/10.1186/s12917-016-0812-7
  32. Chen W, Yang Q. 2020. Development of novel pesticides targeting insect chitinases: a minireview and perspective. J. Agric. Food Chem. 68: 4559-4565. https://doi.org/10.1021/acs.jafc.0c00888
  33. DiFrancesco BR, Morrison ZA, Nitz M. 2018. Monosaccharide inhibitors targeting carbohydrate esterase family 4 de-N-acetylases. Bioorg. Med. Chem. 26: 5631-5643. https://doi.org/10.1016/j.bmc.2018.10.008
  34. Giastas P, Andreou A, Papakyriakou A, Koutsioulis D, Balomenou S, Tzartos SJ, et al. 2018. Structures of the peptidoglycan N-acetylglucosamine deacetylase Bc1974 and its complexes with zinc metalloenzyme inhibitors. Biochemistry 57: 753-763. https://doi.org/10.1021/acs.biochem.7b00919
  35. Chibba A, Poloczek J, Little DJ, Howell PL, Nitz M. 2012. Synthesis and evaluation of inhibitors of E. coli PgaB, a polysaccharide de-N-acetylase involved in biofilm formation. Org. Biomol. Chem. 10: 7103-7107. https://doi.org/10.1039/c2ob26105g
  36. Jaworska MM, Konieczna-Mordas E. 2009. Inhibition of chitin deacetylase by acetic acid, preliminary investigation. Prog. Chem. Appl. Chitin Deriv. 14: 83-88.
  37. Li Y, Liu L, Yang J, Yang Q. 2021. An overall look at insect chitin deacetylases: Promising molecular targets for developing green pesticides. J. Pestic. Sci. 46: 43-52.
  38. Syed Ab Rahman SF, Singh E, Pieterse CMJ, Schenk PM. 2018. Emerging microbial biocontrol strategies for plant pathogens. Plant Sci. 267: 102-111. https://doi.org/10.1016/j.plantsci.2017.11.012
  39. Dukare AS, Paul S, Nambi VE, Gupta RK, Singh R, Sharma K, et al. 2019. Exploitation of microbial antagonists for the control of postharvest diseases of fruits: a review. Crit. Rev. Food Sci. Nutr. 59: 1498-1513. https://doi.org/10.1080/10408398.2017.1417235
  40. O'Brien PA. 2017. Biological control of plant diseases. Australas.Plant Pathol. 46: 293-304. https://doi.org/10.1007/s13313-017-0481-4