Acknowledgement
This work was supported by the National Natural Science Foundation of China (Grant no. 31772016), Jiangsu Province Marine Science and Technology Innovation Project (HY2018-10), the Priority Academic Program Development of Jiangsu Higher Education Institutions, Project "333" of Jiangsu Province, Open-end Funds of Jiangsu Key Laboratory of Marine Bioresources and Environment (SH20191204), and Jiangsu Postgraduate Practice Innovation Program (SJCX20_1303).
References
- Brown ED, Wright GD. 2016. Antibacterial drug discovery in the resistance era. Nature 529: 336-343. https://doi.org/10.1038/nature17042
- Torres-Garcia S, Yaseen I, Shukla M, Audergon P, White SA, Pidoux AL, et al. 2020. Epigenetic gene silencing by heterochromatin primes fungal resistance. Nature 585: 453-458. https://doi.org/10.1038/s41586-020-2706-x
- Alghuthaymi MA, Hassan AA, Kalia A, Sayed El Ahl RMH, El Hamaky AAM, Oleksak P, et al. 2021. Antifungal nano-therapy in veterinary medicine: Current status and future prospects. J. Fungi (Basel) 7: 419. https://doi.org/10.3390/jof7060419
- de Oliveira Filho JG, Silva GDC, Cipriano L, Gomes M, Egea MB. 2021. Control of postharvest fungal diseases in fruits using external application of RNAi. J. Food Sci. 86: 3341-3348. https://doi.org/10.1111/1750-3841.15816
- Fisher MC, Hawkins NJ, Sanglard D, Gurr SJ. 2018. Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science 360: 739-742. https://doi.org/10.1126/science.aap7999
- Baym M, Stone LK, Kishony R. 2016. Multidrug evolutionary strategies to reverse antibiotic resistance. Science 351: aad3292. https://doi.org/10.1126/science.aad3292
- Islam MT, Croll D, Gladieux P, Soanes DM, Persoons A, Bhattacharjee P, et al. 2016. Emergence of wheat blast in Bangladesh was caused by a South American lineage of Magnaporthe oryzae. BMC Biol. 14: 84. https://doi.org/10.1186/s12915-016-0309-7
- Robbins N, Caplan T, Cowen LE. 2017. Molecular evolution of antifungal drug resistance. Annu. Rev. Microbiol. 71: 753-775. https://doi.org/10.1146/annurev-micro-030117-020345
- Chowdhary A, Sharma C, Meis JF. 2017. Candida auris: a rapidly emerging cause of hospital-acquired multidrug-resistant fungal infections globally. PLoS Pathog. 13: e1006290. https://doi.org/10.1371/journal.ppat.1006290
- Chaudhary AS. 2016. A review of global initiatives to fight antibiotic resistance and recent antibiotics' discovery. Acta Pharm. Sin. B. 6: 552-556. https://doi.org/10.1016/j.apsb.2016.06.004
- Giraldo MC, Valent B. 2013. Filamentous plant pathogen effectors in action. Nat. Rev. Microbiol. 11: 800-814. https://doi.org/10.1038/nrmicro3119
- Vallieres C, Avery SV. 2017. Metal-based combinations that target protein synthesis by fungi. Adv. Microb. Physiol. 70: 105-121. https://doi.org/10.1016/bs.ampbs.2017.01.001
- Waterer G. 2021. Advances in antifungal therapies. Mycopathologia 186: 665-672. https://doi.org/10.1007/s11046-021-00560-2
- Xiang H, Yang P, Wang L, Li J, Wang T, Xue J, et al. 2021. Isovitexin is a direct inhibitor of Staphylococcus aureus coagulase. J. Microbiol. Biotechnol. 31: 1350-1357. https://doi.org/10.4014/jmb.2105.05013
- Kim JH, Vinh LB, Hur M, Koo SC, Park WT, Moon YH, et al. 2021. Inhibitory activity of 4-O-benzoyl-3'-O-(OMethylsinapoyl) sucrose from Polygala tenuifolia on Escherichia coli β-glucuronidase. J. Microbiol. Biotechnol. 31: 1576-1582. https://doi.org/10.4014/jmb.2108.08004
- Liu Q, Miao Y, Wang X, Lv G, Peng Y, Li K, et al. 2020. Structure-based virtual screening and biological evaluation of novel non-bisphosphonate farnesyl pyrophosphate synthase inhibitors. Eur. J. Med. Chem. 186: 111905. https://doi.org/10.1016/j.ejmech.2019.111905
- Reddy RH, Kim H, Cha S, Lee B, Kim YJ. 2017. Structure-based virtual screening of protein tyrosine phosphatase inhibitors: Significance, challenges, and solutions. J. Microbiol. Biotechnol. 27: 878-895. https://doi.org/10.4014/jmb.1701.01079
- Chen Q, Chen W, Kumar A, Jiang X, Janezic M, Zhang KYJ, et al. 2021. Crystal structure and structure-based discovery of inhibitors of the nematode chitinase CeCht1. J. Agric. Food Chem. 69: 3519-3526. https://doi.org/10.1021/acs.jafc.1c00162
- Wang Y, He X, Li C, Ma Y, Xue W, Hu B, et al. 2020. Carvedilol serves as a novel CYP1B1 inhibitor, a systematic drug repurposing approach through structure-based virtual screening and experimental verification. Eur. J. Med. Chem. 193: 112235. https://doi.org/10.1016/j.ejmech.2020.112235
- Tang Z, Fu X, Huang L, Wang H, Wang G. 2020. Combining CBP pharmacophore construction and molecular docking to search for potential competitive inhibitors of chitin deacetylase. doi:10.21203/rs.3.rs-99552/v1.
- Grifoll-Romero L, Pascual S, Aragunde H, Biarnes X, Planas A. 2018. Chitin deacetylases: structures, specificities, and biotech applications. Polymers 10: 352. https://doi.org/10.3390/polym10040352
- Aragunde H, Biarnes X, Planas A. 2018. Substrate recognition and specificity of chitin deacetylases and related family 4 carbohydrate esterases. Int. J. Mol. Sci. 19: 412. https://doi.org/10.3390/ijms19020412
- Rao FV, Houston DR, Boot RG, Aerts JM, Hodkinson M, Adams DJ, et al. 2005. Specificity and affinity of natural product cyclopentapeptide inhibitors against A. fumigatus, human, and bacterial chitinases. Chem. Biol. 12: 65-76. https://doi.org/10.1016/j.chembiol.2004.10.013
- Gao F, Zhang BS, Zhao JH, Huang JF, Jia PS, Wang S, et al. 2019. Deacetylation of chitin oligomers increases virulence in soil-borne fungal pathogens. Nat. Plants 5: 1167-1176. https://doi.org/10.1038/s41477-019-0527-4
- Rizzi YS, Happel P, Lenz S, Urs MJ, Bonin M, Cord-Landwehr S, et al. 2021. Chitosan and chitin deacetylase activity are necessary for development and virulence of ustilago maydis. mBio 12: e03419-20.
- Sun R, Liu C, Zhang H, Wang Q. 2015. Benzoylurea chitin synthesis inhibitors. J. Agric. Food Chem. 63: 6847-6865. https://doi.org/10.1021/acs.jafc.5b02460
- Dong Y, Jiang X, Liu T, Ling Y, Yang Q, Zhang L, et al. 2018. Structure-based virtual screening, compound synthesis, and bioassay for the design of chitinase inhibitors. J. Agric. Food Chem. 66: 3351-3357. https://doi.org/10.1021/acs.jafc.8b00017
- Yuan P, Jiang X, Wang S, Shao X, Yang Q, Qian X. 2020. X-ray structure and molecular docking guided discovery of novel chitinase inhibitors with a scaffold of dipyridopyrimidine-3-carboxamide. J. Agric. Food Chem. 68: 13584-13593. https://doi.org/10.1021/acs.jafc.0c03742
- Dietrich RC, Alberca LN, Ruiz MD, Palestro PH, Carrillo C, Talevi A, et al. 2018. Identification of cisapride as new inhibitor of putrescine uptake in Trypanosoma cruzi by combined ligand- and structure-based virtual screening. Eur. J. Med. Chem. 149: 22-29. https://doi.org/10.1016/j.ejmech.2018.02.006
- Jaworska MM. 2011. Chitin deacetylase product inhibition. Biotechnol. J. 6: 244-247. https://doi.org/10.1002/biot.201000245
- Zhao Y, Cheng G, Hao H, Pan Y, Liu Z, Dai M, et al. 2016. In vitro antimicrobial activities of animal-used quinoxaline 1,4-di-N-oxides against mycobacteria, mycoplasma and fungi. BMC Vet. Res. 12: 186. https://doi.org/10.1186/s12917-016-0812-7
- Chen W, Yang Q. 2020. Development of novel pesticides targeting insect chitinases: a minireview and perspective. J. Agric. Food Chem. 68: 4559-4565. https://doi.org/10.1021/acs.jafc.0c00888
- DiFrancesco BR, Morrison ZA, Nitz M. 2018. Monosaccharide inhibitors targeting carbohydrate esterase family 4 de-N-acetylases. Bioorg. Med. Chem. 26: 5631-5643. https://doi.org/10.1016/j.bmc.2018.10.008
- Giastas P, Andreou A, Papakyriakou A, Koutsioulis D, Balomenou S, Tzartos SJ, et al. 2018. Structures of the peptidoglycan N-acetylglucosamine deacetylase Bc1974 and its complexes with zinc metalloenzyme inhibitors. Biochemistry 57: 753-763. https://doi.org/10.1021/acs.biochem.7b00919
- Chibba A, Poloczek J, Little DJ, Howell PL, Nitz M. 2012. Synthesis and evaluation of inhibitors of E. coli PgaB, a polysaccharide de-N-acetylase involved in biofilm formation. Org. Biomol. Chem. 10: 7103-7107. https://doi.org/10.1039/c2ob26105g
- Jaworska MM, Konieczna-Mordas E. 2009. Inhibition of chitin deacetylase by acetic acid, preliminary investigation. Prog. Chem. Appl. Chitin Deriv. 14: 83-88.
- Li Y, Liu L, Yang J, Yang Q. 2021. An overall look at insect chitin deacetylases: Promising molecular targets for developing green pesticides. J. Pestic. Sci. 46: 43-52.
- Syed Ab Rahman SF, Singh E, Pieterse CMJ, Schenk PM. 2018. Emerging microbial biocontrol strategies for plant pathogens. Plant Sci. 267: 102-111. https://doi.org/10.1016/j.plantsci.2017.11.012
- Dukare AS, Paul S, Nambi VE, Gupta RK, Singh R, Sharma K, et al. 2019. Exploitation of microbial antagonists for the control of postharvest diseases of fruits: a review. Crit. Rev. Food Sci. Nutr. 59: 1498-1513. https://doi.org/10.1080/10408398.2017.1417235
- O'Brien PA. 2017. Biological control of plant diseases. Australas.Plant Pathol. 46: 293-304. https://doi.org/10.1007/s13313-017-0481-4