Acknowledgement
This study was supported by the National Natural Science Foundation of China (No. 51975400, 62031022) and Shanxi Provincial Key Medical Scientific Research Project (2020XM06).
References
- Siegel RL, Miller KD, Fuchs HE, Jemal A. 2021. Cancer statistics, 2021 CA Cancer J. Clin. 71: 7-33.
- Schadendorf D, van Akkooi ACJ, Berking C, Griewank KG, Gutzmer R, Hauschild A, et al. 2018. Melanoma. Lancet 392: 971-984. https://doi.org/10.1016/S0140-6736(18)31559-9
- Marzuka A, Huang L, Theodosakis N, Bosenberg M. 2015. Melanoma treatments: advances and mechanisms. J. Cell. Physiol. 230: 2626-2633. https://doi.org/10.1002/jcp.25019
- Luo H, Vong CT, Chen H, Gao Y, Lyu P, Qiu L, et al. 2019. Naturally occurring anti-cancer compounds: shining from Chinese herbal medicine. Chin. Med. 14: 48. https://doi.org/10.1186/s13020-019-0270-9
- Wang S, Long S, Deng Z, Wu W. 2020. Positive role of Chinese herbal medicine in cancer immune regulation. Am. J. Chin. Med. 48: 1577-1592. https://doi.org/10.1142/s0192415x20500780
- Theoharides TC. 2021. Luteolin: the wonder flavonoid. Biofactors 47: 139-140. https://doi.org/10.1002/biof.1729
- Ghallab A. 2020. Anticancer activity of luteolin glycosides. Excli J. 19: 1154-1155.
- Elnaggar YSR, Elsheikh MA, Abdallah OY. 2018. Phytochylomicron as a dual nanocarrier for liver cancer targeting of luteolin: in vitro appraisal and pharmacodynamics. Nanomedicine 13: 209-232. https://doi.org/10.2217/nnm-2017-0220
- Ahmed S, Khan H, Fratantonio D, Hasan MM, Sharifi S, Fathi N, et al. 2019. Apoptosis induced by luteolin in breast cancer: Mechanistic and therapeutic perspectives. Phytomedicine 59: 152883. https://doi.org/10.1016/j.phymed.2019.152883
- Lin T-H, Hsu W-H, Tsai P-H, Huang Y-T, Lin C-W, Chen K-C, et al. 2017. Dietary flavonoids, luteolin and quercetin, inhibit invasion of cervical cancer by reduction of UBE2S through epithelial-mesenchymal transition signaling. Food Funct. 8: 1558-1568. https://doi.org/10.1039/C6FO00551A
- Han K, Lang T, Zhang Z, Zhang Y, Sun Y, Shen Z, et al. 2018. Luteolin attenuates Wnt signaling via upregulation of FZD6 to suppress prostate cancer stemness revealed by comparative proteomics. Sci. Rep. 8: 8537. https://doi.org/10.1038/s41598-018-26761-2
- Fontoura JC, Viezzer C, dos Santos FG, Ligabue RA, Weinlich R, Puga RD, et al. 2020. Comparison of 2D and 3D cell culture models for cell growth, gene expression and drug resistance. Mater. Sci. Eng. C-Mater. Biol. Appl. 107: 110264. https://doi.org/10.1016/j.msec.2019.110264
- Anderson NM, Simon MC. 2020. The tumor microenvironment. Curr. Biol. 30: R921-R925. https://doi.org/10.1016/j.cub.2020.06.081
- Carreira SC, Begum R, Perriman AW. 2020. 3D Bioprinting: the emergence of programmable biodesign. Adv. Healthc. Mater. 9: e1900554.
- Unal AZ, West JL. 2020. Synthetic ECM: bioactive synthetic hydrogels for 3D tissue engineering. Bioconjug. Chem. 31: 2253-2271. https://doi.org/10.1021/acs.bioconjchem.0c00270
- Mollica PA, Booth-Creech EN, Reid JA, Zamponi M, Sullivan SM, Palmer X-L, et al. 2019. 3D bioprinted mammary organoids and tumoroids in human mammary derived ECM hydrogels. Acta Biomater. 95: 201-213. https://doi.org/10.1016/j.actbio.2019.06.017
- Yue K, Trujillo-de Santiago G, Moises Alvarez M, Tamayol A, Annabi N, Khademhosseini A. 2015. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials 73: 254-271. https://doi.org/10.1016/j.biomaterials.2015.08.045
- Xu X, Wang Y, Lauer-Fields JL, Fields GB, Steffensen B. 2004. Contributions of the MMP-2 collagen binding domain to gelatin cleavage. Substrate binding via the collagen binding domain is required for hydrolysis of gelatin but not short peptides. Matrix Biol. 23: 171-181. https://doi.org/10.1016/j.matbio.2004.05.002
- Warr C, Valdoz JC, Bickham BP, Knight CJ, Franks NA, Chartrand N, et al. 2020. Biocompatible PEGDA Resin for 3D Printing. ACS Appl. Bio Mater. 3: 2239-2244. https://doi.org/10.1021/acsabm.0c00055
- Rekowska N, Arbeiter D, Brietzke A, Konasch J, Riess A, Mau R, et al. 2019. Presented at the 41st annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, Jul 23-27.
- Alketbi AS, Shi YF, Li HX, Raza A, Zhang TJ. 2021. Impact of PEGDA photopolymerization in micro-stereolithography on 3D printed hydrogel structure and swelling. Soft Matter 17: 7188-7195. https://doi.org/10.1039/D1SM00483B
- Wang Y, Ma M, Wang J, Zhang W, Lu W, Gao Y, et al. 2018. Development of a photo-crosslinking, biodegradable GelMA/PEGDA hydrogel for guided bone regeneration materials. Materials 11: 1345. https://doi.org/10.3390/ma11081345
- Nguyen AH, Wang Y, White DE, Platt MO, McDevitt TC. 2016. MMP-mediated mesenchymal morphogenesis of pluripotent stem cell aggregates stimulated by gelatin methacrylate microparticle incorporation. Biomaterials 76: 66-75. https://doi.org/10.1016/j.biomaterials.2015.10.043
- Van Den Bulcke AI, Bogdanov B, De Rooze N, Schacht EH, Cornelissen M, Berghmans H. 2000. Structural and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromolecules 1: 31-38. https://doi.org/10.1021/bm990017d
- Billiet T, Gevaert E, De Schryver T, Cornelissen M, Dubruel P. 2014. The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability. Biomaterials 35: 49-62. https://doi.org/10.1016/j.biomaterials.2013.09.078
- Chandler EM, Berglund CM, Lee JS, Polacheck WJ, Gleghorn JP, Kirby BJ, et al. 2011. Stiffness of photocrosslinked RGD-alginate gels regulates adipose progenitor cell behavior. Biotechnol. Bioeng. 108: 1683-1692. https://doi.org/10.1002/bit.23079
- Lv K, Zhu J, Zheng S, Jiao Z, Nie Y, Song F, et al. 2021. Evaluation of inhibitory effects of geniposide on a tumor model of human breast cancer based on 3D printed Cs/Gel hybrid scaffold. Mater. Sci. Eng. C-Mater. Biol. Appl. 119: 111509. https://doi.org/10.1016/j.msec.2020.111509
- Sarem M, Moztarzadeh F, Mozafari M, Shastri VP. 2013. Optimization strategies on the structural modeling of gelatin/chitosan scaffolds to mimic human meniscus tissue. Mater. Sci. Eng. C-Mater. Biol. Appl. 33: 4777-4785. https://doi.org/10.1016/j.msec.2013.07.036
- Feder-Mengus C, Ghosh S, Reschner A, Martin I, Spagnoli GC. 2008. New dimensions in tumor immunology: what does 3D culture reveal? Trends Mol. Med. 14: 333-340. https://doi.org/10.1016/j.molmed.2008.06.001
- Kapalczynska M, Kolenda T, Przybyla W, Zajaczkowska M, Teresiak A, Filas V, et al. 2018. 2D and 3D cell cultures - a comparison of different types of cancer cell cultures. Arch. Med. Sci. 14: 910-919.
- Ananthanarayanan B, Kim Y, Kumar S. 2011. Elucidating the mechanobiology of malignant brain tumors using a brain matrixmimetic hyaluronic acid hydrogel platform. Biomaterials 32: 7913-7923. https://doi.org/10.1016/j.biomaterials.2011.07.005
- Yin RR, Hao D, Chen P. 2018. Expression and correlation of MMP-9, VEGF, and p16 in infantile hemangioma. Eur. Rev. Med. Pharmacol. Sci. 22: 4806-4811.
- Swift LH, Golsteyn RM. 2016. Cytotoxic amounts of cisplatin induce either checkpoint adaptation or apoptosis in a concentration-dependent manner in cancer cells. Biol. Cell 108: 127-148. https://doi.org/10.1111/boc.201500056
- Yao X, Jiang W, Yu D, Yan Z. 2019. Luteolin inhibits proliferation and induces apoptosis of human melanoma cells in vivo and in vitro by suppressing MMP-2 and MMP-9 through the PI3K/AKT pathway. Food Funct. 10: 703-712. https://doi.org/10.1039/c8fo02013b