DOI QR코드

DOI QR Code

MtMKK5 inhibits nitrogen-fixing nodule development by enhancing defense signaling

  • Hojin Ryu (Department of Biological Sciences and Biotechnology, Chungbuk National University)
  • Received : 2022.10.11
  • Accepted : 2022.10.20
  • Published : 2022.12.31

Abstract

The mitogen-activated protein kinase (MAPK) signaling cascade is essential for a wide range of cellular responses in plants, including defense responses, responses to abiotic stress, hormone signaling, and developmental processes. Recent investigations have shown that the stress, ethylene, and MAPK signaling pathways negatively affect the formation of nitrogen-fixing nodules by directly modulating the symbiotic signaling components. However, the molecular mechanisms underlying the defense responses mediated by MAPK signaling in the organogenesis of nitrogen-fixing nodules remain unclear. In the present study, I demonstrate that the Medicago truncatula mitogen-activated protein kinase kinase 5 (MtMKK5)-Medicago truncatula mitogen-activated protein kinase 3/6 (MtMPK3/6) signaling module, expressed specifically in the symbiotic nodules, promotes defense signaling, but not ethylene signaling pathways, thereby inhibiting nodule development in M. truncatula. U0126 treatment resulted in increased cell division in the nodule meristem zone due to the inhibition of MAPK signaling. The phosphorylated TEY motif in the activation domain of MtMPK3/6 was the target domain associated with specific interactions with MtMKK5. I have confirmed the physical interactions between M. truncatula nodule inception (MtNIN) and MtMPK3/6. In the presence of high expression levels of the defense-related genes FRK1 and WRKY29, MtMKK5a overexpression significantly enhanced the defense responses of Arabidopsis against Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). Overall, my data show that the negative regulation of symbiotic nitrogen-fixing nodule organogenesis by defense signaling pathways is mediated by the MtMKK5-MtMPK3/6 module.

Keywords

Acknowledgement

This work was supported by the National Research Foundation (NRF-2021R1I1A3050947).

References

  1. Ane JM, Kiss GB, Riely BK, Penmetsa RV, Oldroyd GE, Ayax C, Levy J, Debelle F, Baek JM, Kalo P, Rosenberg C, Roe BA, Long SR, Denarie J, Cook DR (2004) Medicago truncatula DMI1 required for bacterial and fungal symbioses in legumes. Science 303 (5662):1364-1367 https://doi.org/10.1126/science.1092986
  2. Cao Y, Halane MK, Gassmann W, Stacey G (2017) The Role of Plant Innate Immunity in the Legume-Rhizobium Symbiosis. Annu Rev Plant Biol 68:535-561 https://doi.org/10.1146/annurev-arplant-042916-041030
  3. Chung HS, Sheen J (2017) MAPK Assays in Arabidopsis MAMP-PRR Signal Transduction. Methods Mol Biol 1578:155-166 https://doi.org/10.1007/978-1-4939-6859-6_12
  4. Geurts R, Bisseling T (2002) Rhizobium nod factor perception and signalling. Plant Cell 14Suppl:S239-249 https://doi.org/10.1105/tpc.002451
  5. Ghantasala S, Roy Choudhury S (2022) Nod factor perception: an integrative view of molecular communication during legume symbiosis. Plant Mol Biol. doi:10.1007/s11103-022-01307-3
  6. Hamel LP, Nicole MC, Sritubtim S, Morency MJ, Ellis M, Ehlting J, Beaudoin N, Barbazuk B, Klessig D, Lee J, Martin G, Mundy J, Ohashi Y, Scheel D, Sheen J, Xing T, Zhang S, Seguin A, Ellis BE (2006) Ancient signals: comparative genomics of plant MAPK and MAPKK gene families. Trends Plant Sci 11(4):192-198 https://doi.org/10.1016/j.tplants.2006.02.007
  7. Hejatko J, Ryu H, Kim GT, Dobesova R, Choi S, Choi SM, Soucek P, Horak J, Pekarova B, Palme K, Brzobohaty B, Hwang I (2009) The histidine kinases CYTOKININ-INDEPENDENT1 and ARABIDOPSIS HISTIDINE KINASE2 and 3 regulate vascular tissue development in Arabidopsis shoots. Plant Cell 21(7):2008-2021 https://doi.org/10.1105/tpc.109.066696
  8. Hong CP, Jang GY, Ryu H (2021a) Gibberellins enhance plant growth and ginsenoside content in Panax ginseng. Journal of Plant Biotechnology 48(3):186-192 https://doi.org/10.5010/JPB.2021.48.3.186
  9. Hong CP, Kim J, Lee J, Yoo S-i, Bae W, Geem KR, Yu J, Jang I, Jo IH, Cho H (2021b) Gibberellin signaling promotes the secondary growth of storage roots in Panax ginseng. International Journal of Molecular Sciences 22(16):8694
  10. Kalo P, Gleason C, Edwards A, Marsh J, Mitra RM, Hirsch S, Jakab J, Sims S, Long SR, Rogers J, Kiss GB, Downie JA, Oldroyd GE (2005) Nodulation signaling in legumes requires NSP2, a member of the GRAS family of transcriptional regulators. Science 308(5729):1786-1789 https://doi.org/10.1126/science.1110951
  11. Kim J, Shin WR, Kim YH, Shim D, Ryu H (2021) Functional characterization of gibberellin signaling related genes in Panax ginseng. J Plant Biotech 48(3):148-155 https://doi.org/10.5010/JPB.2021.48.3.148
  12. Levy J, Bres C, Geurts R, Chalhoub B, Kulikova O, Duc G, Journet EP, Ane JM, Lauber E, Bisseling T, Denarie J, Rosenberg C, Debelle F (2004) A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses. Science 303(5662):1361-1364 https://doi.org/10.1126/science.1093038
  13. Limpens E, Franken C, Smit P, Willemse J, Bisseling T, Geurts R (2003) LysM domain receptor kinases regulating rhizobial Nod factor-induced infection. Science 302(5645):630-633 https://doi.org/10.1126/science.1090074
  14. Meng X, Zhang S (2013) MAPK cascades in plant disease resistance signaling. Annu Rev Phytopathol 51:245-266 https://doi.org/10.1146/annurev-phyto-082712-102314
  15. Minguillon S, Matamoros MA, Duanmu D, Becana M (2022) Signaling by reactive molecules and antioxidants in legume nodules. ㅋNew Phytol 236(3):815-832 https://doi.org/10.1111/nph.18434
  16. Moling S, Pietraszewska-Bogiel A, Postma M, Fedorova E, Hink MA, Limpens E, Gadella TW, Bisseling T (2014) Nod factor receptors form heteromeric complexes and are essential for intracellular infection in medicago nodules. Plant Cell 26(10):4188-4199 https://doi.org/10.1105/tpc.114.129502
  17. Nishimura R, Hayashi M, Wu GJ, Kouchi H, Imaizumi-Anraku H, Murakami Y, Kawasaki S, Akao S, Ohmori M, Nagasawa M, Harada K, Kawaguchi M (2002) HAR1 mediates systemic regulation of symbiotic organ development. Nature 420(6914):426-429 https://doi.org/10.1038/nature01231
  18. Oldroyd GE, Downie JA (2008) Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol 59:519-546 https://doi.org/10.1146/annurev.arplant.59.032607.092839
  19. Ouaked F, Rozhon W, Lecourieux D, Hirt H (2003) A MAPK pathway mediates ethylene signaling in plants. EMBO J 22(6):1282-1288 https://doi.org/10.1093/emboj/cdg131
  20. Pan H, Wang D (2017) Nodule cysteine-rich peptides maintain a working balance during nitrogen-fixing symbiosis. Nat Plants 3(5):17048
  21. Ryu H, Cho H, Choi D, Hwang I (2012) Plant hormonal regulation of nitrogen-fixing nodule organogenesis. Mol Cells 34(2):117-126 https://doi.org/10.1007/s10059-012-0131-1
  22. Ryu H, Kim K, Cho H, Park J, Choe S, Hwang I (2007) Nucleocytoplasmic shuttling of BZR1 mediated by phosphorylation is essential in Arabidopsis brassinosteroid signaling. Plant Cell 19(9):2749-2762 https://doi.org/10.1105/tpc.107.053728
  23. Ryu H, Laffont C, Frugier F, Hwang I (2017) MAP Kinase-Mediated Negative Regulation of Symbiotic Nodule Formation in Medicago truncatula. Mol Cells 40(1):17-23 https://doi.org/10.14348/molcells.2017.2211
  24. Shan L, He P, Sheen J (2007) Intercepting host MAPK signaling cascades by bacterial type III effectors. Cell Host Microbe 1(3):167-174 https://doi.org/10.1016/j.chom.2007.04.008
  25. Soyano T, Hirakawa H, Sato S, Hayashi M, Kawaguchi M (2014) Nodule Inception creates a long-distance negative feedback loop involved in homeostatic regulation of nodule organ production. Proc Natl Acad Sci USA 111(40):14607-14612 https://doi.org/10.1073/pnas.1412716111
  26. Tsikou D, Yan Z, Holt DB, Abel NB, Reid DE, Madsen LH, Bhasin H, Sexauer M, Stougaard J, Markmann K (2018) Systemic control of legume susceptibility to rhizobial infection by a mobile microRNA. Science 362(6411):233-236 https://doi.org/10.1126/science.aat6907
  27. Wang Q, Liu J, Zhu H (2018) Genetic and Molecular Mechanisms Underlying Symbiotic Specificity in Legume-Rhizobium Interactions. Front Plant Sci 9:313
  28. Wood NT (2001) Nodulation by numbers: the role of ethylene in symbiotic nitrogen fixation. Trends Plant Sci 6(11):501-502 https://doi.org/10.1016/S1360-1385(01)02128-8
  29. Yoo SD, Cho YH, Tena G, Xiong Y, Sheen J (2008) Dual control of nuclear EIN3 by bifurcate MAPK cascades in C2H4 signalling. Nature 451(7180):789-795 https://doi.org/10.1038/nature06543
  30. Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63(4):968-989 https://doi.org/10.1128/MMBR.63.4.968-989.1999