DOI QR코드

DOI QR Code

Evaluation of the Soil-Structure Interaction of a MDOF Column Type Structure on Group Piles Based on the Large Scale 1g Shaking Table Test and the Numerical Analysis

대형 진동대 실험 및 수치해석을 이용한 다자유도 기둥 구조물과 군말뚝 기초의 지반-구조물 상호작용 평가

  • Chae, Jonghoon (School of Civil Engrg., Chungbuk National Univ.) ;
  • Yoon, Hyungchul (School of Civil Engrg., Chungbuk National Univ.) ;
  • Ahn, Jaehun (Dept. of Civil and Environmental Engrg., Pusan National Univ.) ;
  • Jung, Jongwon (School of Civil Engrg., Chungbuk National Univ.)
  • 채종훈 (충북대학교 토목공학부) ;
  • 윤형철 (충북대학교 토목공학부) ;
  • 안재훈 (부산대학교 사회환경시스템공학부) ;
  • 정종원 (충북대학교 토목공학부)
  • Received : 2022.02.21
  • Accepted : 2022.03.15
  • Published : 2022.04.30

Abstract

Many 1g shaking table tests with an SDOF structure supported by a single pile were performed to evaluate the soil-structure interaction (SSI) effect. Since most structures supported by group piles are MDOF structures with columns, the SSI effect is simulated using a large 1g shaking table test and numerical analysis. According to the results, the movement in the piles tends to increase with input acceleration and when the input frequency is similar to the natural frequency. Furthermore, the slope of the dynamic p-y curve remains constant regardless of the variation of acceleration and input frequency. According to the results of the dynamic p-y backbone curve and the moment of group piles, a center pile with a leading pile has more soil resistance than side piles with a trailing pile, and the effect of group piles is observed above the 7D center to center pile distance.

동적 하중 재하시 지반-구조물 상호작용 확인을 위해 최근까지 단말뚝을 고려한 진동대 실험이 많이 시행됐다. 그러나, 실제 구조물의 대부분은 군말뚝 기초로 지지되는 기둥 형태의 다자유도 구조물이므로 본 연구에서는 이를 고려하여 대형 진동대 실험 및 수치해석을 통해 지반-구조물 상호 작용을 분석하였다. 연구 결과, 다자유도 기둥 구조물은 가속도의 증가 및 구조물의 고유 진동수와의 일치 여부에 따라 말뚝의 모멘트는 증가하였다. 또한, 동적 p-y 곡선의 기울기는 가속도 및 입력 진동수의 변화에 상관없이 일정한 기울기를 나타내었다. 다자유도 기둥 구조물의 동적 p-y 중추 곡선 및 군말뚝의 모멘트에 대한 분석 결과, 반복하중에 의해 배후말뚝 조건인 양 측면말뚝보다 선두말뚝의 중심말뚝에서 큰 지반 저항력을 나타내며, 군말뚝 효과는 기존 연구와는 상이하게 7D 이상에서도 발현되는 것으로 나타났다.

Keywords

Acknowledgement

본 연구는 국토교통과학기술진흥원(22CTAP-C164367-02) 및 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원(No. 2020R1A2C1012352)을 받아 수행되었습니다. 이에 깊은 감사를 드립니다.

References

  1. Ahn, S.N., Park, G., Yoon, H.C., Han, J.H., and Jung, J.W. (2021), "Evaluation of Soil-structure Interaction in Structure Models via Shaking Table Test", Sustainability 2021, 12, 4995. https://doi.org/10.3390/su12124995
  2. API (2020), "Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms", API RP 2A-WSD, 22nd edition, American Petroleum Institute.
  3. Dou, H. and Byrne, P.M. (1996), "Dynamic Response of Single Piles and Soil-pile Interaction", Canadian Geotechnical Journal, Vol.33, pp.80-96. https://doi.org/10.1139/t96-025
  4. Fan, C. C. and Long, J. H. (2005), "Assessment of Existing Methods for Predicting Soil Response of Laterally Loaded Piles in Sand", Computers and Geotechnics, Vol.32, pp.274-289 https://doi.org/10.1016/j.compgeo.2005.02.004
  5. Goit, C. S., Saitoh, M., Kawakami, H., and Nishiyama, S. (2008), "Experimental Studies on Non-linear Response of Soil-pile-structure Systems Subjected to Strong Ground Motion", Proceedings of the 14th World Conference on Earthquake Engineering.
  6. Haiderali, A.E. and Madabhushi, G. (2016), "Evaluation of Curve Fitting Techniques in Deriving p-y Curves for Laterally Loaded Piles", Geotechnical and Geological Engineering, Vol.34, Issue 5, pp.1453-1473. https://doi.org/10.1007/s10706-016-0054-2
  7. Hunt, R. E., "Geotechnical engineering analysis and evaluation", McGraw-Hill Book Company (1986), p.134.
  8. Iai, S. (1989), "Similitude for Shaking Table Tests on Soil-Structure-Fluid Model in 1g Gravitational Field", Soils and Foundations, Vol.29, No.1, pp.105-118. https://doi.org/10.3208/sandf1972.29.105
  9. Kang. H. S. (2018), "Dynamic behavior of Pile Group Considering Superstructure in Sand Ground", Ph. D. Dissertation, Chungbuk National University, Korea
  10. Kim, B.T., Kim, N. K., Lee, W. J., and Kim, Y. S. (2004), "Experimental Load-Transfer Curves of Laterally Loaded Piles in Nak-Dong River Sand", Journal of Geotechnical and Geoenvironmental Engineering, Vol.130, No.4, April 1, pp.416-425. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:4(416)
  11. Kim, S. H. (2018), "Characteristics of Dynamic behavior on Group Piles in Sandy Soil with Pile Cap Location", Ph. D. Dissertation, Chungbuk National University, Korea.
  12. Lee, H. K., Ahn, K. K., and Kang, H. S. (2019), "A Group Pile Effect on Changing Size of Pile Cap in Group Pile under Sand Soil in Earthquake", Journal of the Korean Geo-Environmental Society, Vol.20, No.10, pp.39~46.
  13. Matlock, H. (1970), "Correlations for Design of Laterally Loaded Piles in Soft Clay", In Porc. 2nd Offshore Technology Conference (Houston), Vol.1, pp.577-594.
  14. National Cooperative Highway Research Program (2001), "Static and Dynamic Lateral Loading of Pile Groups", NCHRP Report 461, Transportation Research Board - National Research Council.
  15. Park, J. S. and Jeong, S. S. (2017), "Evaluation of Dynamic p-y Curve based on the Numerical Analysis", Journal of the Korean Geotechnical Society, The Korean Geotechnical Society, Vol.33, No.12, pp.59-73. https://doi.org/10.7843/KGS.2017.33.12.59
  16. Park, J. S. and Jeong, S. S. (2018), "Estimation of Lateral Dynamic p-multiplier of Group Pile Using Dynamic Numerical Analysis Results", Journal of the Korean Society of Civil Engineers, The Korean Society of Civil Engineers, Vol.38, No.4, pp.4567-578.
  17. Polam, I. K. and Chaundhuri, D. (1998), "Modeling of Pile Footings and Drilled Shafts for Seismic Design", Technical Report MCEER-98-0018, Multidisciplinary Center for Earthquake Engineering Research.
  18. Reese, L., Cox, W., and Koop, F. (1974), "Analysis of Laterally Loaded Piles in Sand", In Proc. 6th Offshore Technology Conference (Houston), Vol.2, pp.473-483.
  19. Shirato, M., Nonomura, Y., Fukui, J., and Nakatani, S. (2008), "Large-scale Table Experiment and Numerical Simulation on the Nonlinear behavior of Pile Groups Subjected to Large-scale Earthquakes", Soils and Foundations, Japanese Geotechnical Society, Vol.48, No.3, 375-396. https://doi.org/10.3208/sandf.48.375
  20. Suzuki, H., Tokimatsu, K., and Tabata, K. (2014), "Factors Affecting Stress Distribution of a 3×3 Pile Group in Dry Sand based on Three-dimensional Large Shaking Table Tests", Journal of Soils and Foundatons, the Japanese Geotechnical Society, Vol.54, No.4, pp.699-712. https://doi.org/10.1016/j.sandf.2014.06.009
  21. Ting, J. M., Kauffman, C. R., and Lovicsedk, M. (1987), "Centrifuge Static and Dynamic Lateral Pile behavior", Canadian Geotechnical Journal, Vol.24, pp.198-207. https://doi.org/10.1139/t87-025
  22. Wilson, D. W. (1998), "Soil-pile-superstructure Interaction in Liquefying Sand and Clay", Ph. D. Dissertation, University of California, Davis.
  23. Yang, E. K., Choi, J. I., Han, J. T., and Kim, M. M. (2010), "Evaluation of dynamic group pile effect in sand by 1g shaking table tests", Journal of the Korean Geotechnical Society, The Korean Geotechnical Society, Vol.26, No.8, pp.77-88. https://doi.org/10.7843/KGS.2010.26.8.77
  24. Yun, J. W. and Han, J. T. (2020), "Evaluation of Soil Spring Methods for Response Spectrum Analysis of Pile-supported Structures via Dynamic Centrifuge Tests", Soil Dynamics and Earthquake Engineering, 106537.