DOI QR코드

DOI QR Code

Development of Embedded Type Sensor Module for Measuring Stress of Concrete Using Hetero-core Optical Fiber

헤테로코어 광섬유를 이용한 콘크리트 응력 측정용 매립형 센서모듈의 개발

  • 양희원 (부경대학교 토목공학과) ;
  • 이환우 (부경대학교 토목공학과)
  • Received : 2022.03.17
  • Accepted : 2022.04.01
  • Published : 2022.04.30

Abstract

In this study, in order to directly evaluate the prestress of the PSC structure, a new sensor module based on the measurement of the deformation of concrete was proposed using hetero-core optical fibers and performance tests were performed. In a hetero-core optical fiber, optical loss occurs when a specific part of the transmission path is bent, and the amount of optical loss changes linearly according to the magnitude of the curvature. In order to confirm the measurement performance of the sensor module and the applicability of the optical fiber, the sensor module was deformed and the light passing through the optical fiber was converted into wattage and measured. It can be seen that the light passing through the optical fiber has a linearity of 0.9333 in relation to the deformation while generating the maximum deformation of 0.5 mm at a rate of 0.12 mm/min in a cylindrical concrete specimen with a diameter of 15 cm and a height of 35 cm in which the sensor module is embedded. Based on the results of this experiment, it is judged that it is possible to directly evaluate the prestress of a PSC structure by embedding a sensor module using a hetero-core optical fiber in the structure and measuring the compression deformation in concrete. It is judged that it can be used as useful data for the development of a sheath tube integrated sensor module to be applied to be applied to the girder model experiment.

본 연구에서는 PSC 구조물의 프리스트레스를 직접적으로 평가하기 위해 헤테로코어 광섬유를 활용하여 콘크리트의 변형량 계측을 기반으로 하는 새로운 센서모듈을 제안하고 성능실험을 수행하였다. 헤테로코어 광섬유는 전송로의 특정 부분이 구부러지면 광 손실이 발생하며, 곡률의 크기에 따라 광 손실량이 선형적으로 변한다. 센서모듈의 계측 성능과 광섬유의 적용성을 확인하기 위해 센서모듈에 변형을 발생시키며 광섬유를 통과하는 빛을 전력으로 변환하여 측정하였다. 센서모듈을 매립시킨 지름 15cm, 높이 35cm의 원주형 콘크리트 공시체에 최대 변형량 0.5mm을 0.12mm/min의 속도로 발생시키는 동안 광섬유를 통과한 빛은 변형과의 관계에서 0.9333의 선형성을 가지는 것을 확인할 수 있었다. 이번 실험의 결과를 통해 헤테로코어형 광섬유를 활용한 센서모듈을 구조물에 매립하여 콘크리트 압축변형량 계측을 통해 PSC 구조물의 프리스트레스를 직접적으로 평가하는 것이 가능할 것으로 판단되며, 앞으로 진행될 PSC 부분 거더 모델 실험에 적용할 쉬스관 일체형 센서모듈 개발에 유용한 자료로 활용될 수 있을 것으로 판단된다.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2020R1F1A1069734).

References

  1. Sumitro, S., Hida, K., Diouron, T. Le. (2003), Structural Health Monitoring Paradigm for Concrete Structures, 28th Conference on Our World in Concrete & Structures, CI-PREMIER PTE LTD, Singapore, 525-532.
  2. Lee, S. C., Choi, S. Y., Shin, K. J., Kim, J. M., Lee, H. W. (2015), Measurement of Transfer Length for a Seven-Wire Strand with FBG Sensors, Journal of Computational Structural Engineering Institute of Korea, 28(6), 707-714. https://doi.org/10.7734/COSEIK.2015.28.6.707
  3. Wang, M. L., Chen, Z. (2000), Magneto-Elastic Permeabitilty Measurement for Stress Monitoring in Steel Tendons and Cables, Proc. of the SPIE 7th Annual Symposium on Smart Structures and Materials, Health Monitoring of the Highway Transportation Infrastructure, 3995, 492-500.
  4. Measures, R. M., Alavie, A. T., Maaskant, R., Ohn, M., Karr, S., Huang, S. (1994), Bragg Grating Structural Sensing System for Bridge Monitoring, Proc. of the SPIE 1994, 2294, 53-60.
  5. Maaskant, R., Alabie, T., Measures, R. M., Tadros, G., Rizkalla, S. H., Guha-Thakurta, A. (1997), Fiber-Optic Bragg Grating Sensors for Bridge Monitoring, Cement & Concr. Compos., 19, 21-33. https://doi.org/10.1016/S0958-9465(96)00040-6
  6. Kim, H. W., Kim, J. M., Choi, S. Y., Park, S. Y., Lee, H. W. (2015), Long Term Monitoring of Prestressing Tension Force in Post - Tension UHPC Bridge using Fiber Optical FBG Sensor, Journal of Computational Structural Engineering Institute of Korea, 28(6), 699-706. https://doi.org/10.7734/COSEIK.2015.28.6.699
  7. Roller, J. J., Russell, H. G., Brucr Jr, R. N., Alaywan, W. R. (2011), Evaluation of Prestress Losses in High-strength Concrete Bulb-tee Girders for the Rigolets Pass Bridge, PCI J., 56(1), 110-134. https://doi.org/10.15554/pcij.01012011.110.134
  8. Inaudi, D. (1994), Low-Coherence Deformation Sensors for the Monitoring of Civil Engineering Structures, Sens. & Actuators A, 44, 125-130. https://doi.org/10.1016/0924-4247(94)00797-7
  9. Idriss, R. L. (2001), Monitoring of a High Performance Prestressed Concrete Bridge with Embedded Optical Piber Sensors during Fabrication, Construction and Service, Proceedings of the 9th International Conference Structural Faults Repair, London.
  10. Gauthuer, R. C., Ross, C. (1997), Theoretical and experimental considerations for a single-mode fiber-optic bend-type sensor, Applied Optics, 36(25), 6264-6273. https://doi.org/10.1364/AO.36.006264
  11. Marcuse, D. (1976), Curvature loss fomula for optical fibers, Journal of Optical Society of America, 66(3), 216-220. https://doi.org/10.1364/JOSA.66.000216
  12. Donlagic, D., Culshaw, B. (2000), Propagation of the fundamental mode in curved graded index multimode fiber and its application in sensor system, Journal of Lightwave Technology, 18(3), 334-342. https://doi.org/10.1109/50.827505
  13. Yoo, J. A., Jo, J. H., Kwon, I. B. (2004), Multiplexed Bend Loss Type Single-Mode Fiber-Optic Displacement Sensor Using Reflection Signals Generated at Optical Connectors, Journal of the Optical Society of Korea, 15(5), 415-422.
  14. Snyder, A. W., Love, J. D. (1983), Optical Waveguide Theory, Chapman and Hall, London, 250-290.
  15. Lee, K. H., Ahn, B. J., Kim, D. H. (2011), Fiber Optic Displacement Sensor System for Structural Health Monitoring, Journal of the Korean Society for Nondesturctive Testing, 31(4), 374-381.
  16. Kim, Y. B., Lee, K. S., Watanabe, K., Sasaki, H., Choi, Y. W. (2007), Hetero-core Spliced Fiber Optical Sensing System for an Environment Monitoring, Journal of Ocean Engineering and Technology, 21(3), 46-51.
  17. Park, K. T. (2007), The State of the Art on Bridge Monitoring by using Fiber Optic Sensor, Journal of the Korea Institute for Structural Maintenance and Inspection, 11(5), 3-9.
  18. Park, Y. S., Song, K. T., Jin, S. S., Park, Y. H., Kim, S. T. (2020), Optical Fiber-Based Hybrid Nerve Measurement System for Static and Dynamic Behavior of Structures, Journal of the Korea Institute for Structural Maintenance and Inspection, 24(2), 33-40. https://doi.org/10.11112/JKSMI.2020.24.2.33