DOI QR코드

DOI QR Code

Germination Characteristics in Seeds of Broussonetia kazinoki Siebold ex Siebold & Zucc (Moraceae) Native to East Asia

동아시아 특산식물 애기닥나무 Broussonetia kazinoki Siebold ex Siebold & Zucc (Moreaceae) 종자의 발아특성

  • Kim, Gun Mo (Department of Horticulture and Breeding, Andong National University) ;
  • Chung, Jae Min (Division of Plant Resources, Korea National Arboretum) ;
  • Jung, Ji Young (Division of Plant Resources, Korea National Arboretum) ;
  • Choi, Hyeok Jae (Department of Biology and Chemistry, Changwon National University) ;
  • Lee, Seung Youn (Department of Horticulture and Breeding, Andong National University)
  • 김건모 (국립안동대학교 원예육종학과) ;
  • 정재민 (국립수목원 식물자원연구과) ;
  • 정지영 (국립수목원 식물자원연구과) ;
  • 최혁재 (국립창원대학교 생물.화학융합학부) ;
  • 이승연 (국립안동대학교 원예육종학과)
  • Received : 2021.07.28
  • Accepted : 2021.10.19
  • Published : 2022.02.01

Abstract

This research was conducted to develop a seed propagation protocol for the use of Broussonetia kazinoki Siebold ex Siebold & Zucc, which native to East Asia. Light and temperature conditions, GA3 treatment, and low-temperature stratification were performed to evaluate the germination characteristics. The germination percentage at 4, 15/6, 20/10 and 25/15℃ was 0, 42. 5, 44. 4 and 91.7%, respectively. Thus, the optimal germination temperature of the B. kazinoki seeds was 25/15℃. Although germination was delayed by relatively low temperature conditions, GA3 treatment allowed for increased germination rates even under the low temperature conditions. Cold stratification reduced time to germination. Relatively low germination percentages at 20/10℃ and 15/6℃ indicated that the seeds had been under the state of conditional dormancy. Through this study, B. kazinoki seeds have conditional dormancy because they can be germinated through GA3 treatment even under relatively low temperature conditions and it is judged that it will support the commercial propagation practice in the future.

본 연구는 동아시아 특산식물 애기닥나무의 자원식물로서 활용을 위한 대량증식법 개발을 위해 실시하였다. 종자의 발아특성을 알아보기 위해 광·온도조건, GA3 처리, 저온층적처리를 실시하였다. 온도조건 실험에서 4, 15/6, 20/10, 25/15℃에서 발아율은 각각 0, 42.5, 44.4, 91.7%였다. 따라서 애기닥나무 종자의 발아 최적온도는 25/15℃였다. 온도조건에 따라 발아가 제한되었지만, GA3 처리를 통해 상대적으로 낮은 온도조건에서도 발아율을 높일 수 있었다. 저온층적처리를 통해 발아소요일수를 단축할 수 있었으며. 이를 통해 애기닥나무 종자를 conditional dormancy 유형으로 분류하였다. 본 연구결과를 통하여 적정 발아 온도조건은 25/15℃이며, 상대적으로 낮은 온도조건에서도 GA3처리로 종자기반 대량증식이 가능하며, 향후 산업적인 활용에 도움이 될 것이라 판단된다.

Keywords

Acknowledgement

본 연구는 국립수목원 '유용자원식물 대량증식법 개발' 과제와 KIST '개방형 연구사업 (금강초롱프로그램, 2E30650)'의 지원에 의해 수행되었음.

References

  1. Barbour, J.R., Read, R.A and R.L. Barnes. 2008. "Morus L.: Mulberry": In The Woody Plant Seed Manual Agricultural Handbook No. 727, Bonner, F.T. and R.P. Karrfalt (eds.), U.S Department of Agriculture, Forest Service, Washington, D.C. (USA). pp. 728-732.
  2. Baskin, C.C. and J.M. Baskin. 1998. Seeds: Ecology, biogeography, and evolution of dormancy and germination. Academic Press, New York (USA).
  3. Baskin, C.C. and J.M. Baskin. 2003. When breaking seed dormancy is a problem: try a move-along experiment. Native Plant J. 4:17-21. https://doi.org/10.3368/npj.4.1.17
  4. Baskin, C.C. and J.M. Baskin. 2004. A classification system for seed dormancy. Seed Sci Res. 14:1-16. https://doi.org/10.1079/ssr2003150
  5. Baskin, C.C., J.M. Baskin. and Li X. 2000. Taxonomy, anatomy and evolution of physical dormancy in seeds. Plant Species Biol. 15:139-152. https://doi.org/10.1046/j.1442-1984.2000.00034.x
  6. Bewley, J.D. and M. Black. 1982. Physiology and biochemistry of seeds in relation to germination. Vol 2. Viability, dormancy and environmental control. Springer-Verlag, Berlin, Germany.
  7. Campbell, P.L., J. Van Staden, C. Stevens and M.I. Whitwell. 1992. The effects of locality, season and year of seed collection on the germination of bugweed (Solanum mauritianum Scop) seeds. S. Afr. J. Bot. 58:310-316. https://doi.org/10.1016/s0254-6299(16)30816-x
  8. Chung, K.F., W.H. Kuo, Y.H. Hsu, Y.H. Li, R.R. Rubite and W.B. Xu. 2017. Molecular recircumscription of Broussonetia (Moraceae) and the identity and taxonomic statua of B. kaempferi var. australis. Bot. Studies 58:1-12. https://doi.org/10.1186/s40529-016-0155-5
  9. Copete, M.A., J.M. Herranz and P. Ferrandis. 2009. Seed germination ecology of the endemic Iberian winter annuals Iberis pectinata and Ziziphora aragonensis. Seed Sci Res. 19:155-169. https://doi.org/10.1017/S0960258509990079
  10. Dirr, M.A. and C.W. Heuser. 1987. The reference manual of woody plant propagation: from seed to tissue culture. Athens, GA:Varsity Press, Athens, Georgia (USA). p. 239.
  11. Dumroese, R.K. and T.D, Landis. 2016. The Native Plant Propagation Protocol Database: 16 years of sharing information. Native Plants J. 17:267-272. https://doi.org/10.3368/npj.17.3.267
  12. Graeber, K., K. Nakabayashi and G. Leubner-Metzger. 2017. Development of Dormancy. Encyclopedia of Applied Plant Sciences, 2nd edition, Volume 1, Academic Press, London, UK. pp. 483-489.
  13. Hartmann, H.T., D.E. Kester, F.T. Davies and R.L. Geneve. 2002. Hartmann and Kester's plant propagation: Principles and practices. 7th ed. Prentice Hall, New Jersey (USA).
  14. Jones, S.K., R.H. Ellis and P.G. Gosling. 1997. Loss and induction of conditional dormancy in seeds of Sitka spruce maintained moist at different temperatures. Seed Sci. Res. 7:351-358. https://doi.org/10.1017/S0960258500003755
  15. Jones, S.K., R.H. Ellis and P.G. Gosling. 1998. Reimposition of conditional dormancy during air-dry storage of prechilled Sitka spruce seeds. Seed Sci Res. 8:113-122. https://doi.org/10.1017/S0960258500004001
  16. Kim, H.J., D. Kim, H. Yoon, C.S. Choi, Y.S. Oh and H.S. Jun. 2020. Prevention of oxidative stress-induced pancreatic beta cell damage by Broussonetia kazinoki Siebold fruit extract via the ERK-Nox4 pathway. Antioxidants 9:406. https://doi.org/10.3390/antiox9050406
  17. Kim, H.S., A.H. Im, J.M. Jung and H.G, Park. 2019. Korean traditional paper. Sun Publishing Co., Ltd, Seoul, Korea. p. 40, p. 44, p. 52.
  18. Koyuncu, F. 2005. Breaking seed dormancy in black mulberry (Morus nigra L.) by cold stratifcation and exogenous application of gibberellic acid. Acta Biol Cracoviensia Ser Bot. 47:23-26.
  19. Kwon, B., M.H. Kim, I.S. Park, Y.M. Choo, K.S. Kim, M.S. Kim, M.J. Kim, H.J. Kim, D.I. Choi, M. Park, M. Kim, M.K. Shin, J. Lee, S.I. Jeong, K.Y. Yu and J. Kim. 2019. The potential efficacy of Broussonetia kazinoki stem extract to show antioxidant property or suppress collagenase activity. Biomed J Sci & Tech Res. 3:12802-12804.
  20. Lee, H., H. Ha, J.K. Lee, S.J. Park, S.I. Jeong and H.K. Shin. 2014. The leaves of Broussonetia kazinoki Siebold inhibit atopic dermatitis-like response on mite allergen-treated NC/Nga mice. Biomol Ther. 22:438-444. https://doi.org/10.4062/biomolther.2014.023
  21. Lee, S.Y., Y.H. Rhie and K.S. Kim. 2015. Non-deep simple morphophysiological dormancy in seeds of Thalictrum roche brunianum, an endemic perennial herb in the Korean peninsula. Hort. Environ. Biotechnol. 56:366-375. https://doi.org/10.1007/s13580-015-0150-x
  22. Martin, A.C. 1946. The comparative internal morphology of seeds. The American Midland Nat. 36:513-660. https://doi.org/10.2307/2421457
  23. Shin, S.L., Y.K. Lim, H.J. Kwon, Y.R. Kim and S.Y. Kim. 2017. Morphological characteristics and germination conditions of seeds in Arabis pendula L. Korean J Plant Res. 30:50-57. https://doi.org/10.7732/KJPR.2016.30.1.050
  24. USDA FS (USDA Forest Service). 2002. Unpublished data. Dry Branch, GA: National Tree Seed Laboratory https://www.fs.usda.gov.
  25. Yan, D.F., W. Zhou, X. Wang, Y. Ren, E.D. Yang and R.Q. Pian. 2019. Effects of different acid and alkali corrosion, temperature and light intensity on seed germination of Broussonetia papyrifera. J. South. Agr. 50:1057-1063.
  26. Yoo, B.K., K. Kwon, Y.H. Ko, H.G. Kim, S. Lee, K.H. Park and O.Y. Kwon. 2016. Screening of natural product libraries for the extension of cell life-span through immune system. J. Life Sci. 26:359-363. https://doi.org/10.5352/JLS.2016.26.3.359