DOI QR코드

DOI QR Code

Preparation of High-Solid Microfibrillated Cellulose from Gelidium amansii and Characterization of Its Physiochemical and Biological Properties

  • Min Jeong Kim (School of Food Science and Biotechnology, Kyungpook National University) ;
  • Nur Istianah (School of Food Science and Biotechnology, Kyungpook National University) ;
  • Bo Ram So (School of Food Science and Biotechnology, Kyungpook National University) ;
  • Hye Jee Kang (School of Food Science and Biotechnology, Kyungpook National University) ;
  • Min Jeong Woo (School of Food Science and Biotechnology, Kyungpook National University) ;
  • Su Jin Park (Research Center, Honest Co., Ltd.) ;
  • Hyun Jeong Kim (Research Center, Honest Co., Ltd.) ;
  • Young Hoon Jung (School of Food Science and Biotechnology, Kyungpook National University) ;
  • Sung Keun Jung (School of Food Science and Biotechnology, Kyungpook National University)
  • Received : 2022.10.06
  • Accepted : 2022.10.14
  • Published : 2022.12.28

Abstract

Microfibrillated cellulose (MFC) is a valuable material with wide industrial applications, particularly for the food and cosmetics industries, owing to its excellent physiochemical properties. Here, we prepared high-solid microfibrillated cellulose (HMFC) from the centrifugation of Gelidium amansiiderived MFC right after fibrillation. Dispersion properties, morphology, and structural changes were monitored during processing. HMFC has a five-fold higher solid concentration than MFC without significant changes to dispersion properties. SEM images and FTIR spectra of HMFC revealed a stable surface and structure against centrifugal forces. HMFC exhibited 2,2'-azino-bis (3-ethylbenzothiazoline6-sulfonic acid) (ABTS) radical scavenging activity, although it could not scavenge 2,2-diphenyl-1- picrylhydrazyl (DPPH). Moreover, HMFC inhibited the generation of LPS-induced excessive nitrite and radial oxygen species in murine macrophage RAW264.7 cells. Additionally, HMFC suppressed LPS-induced Keap-1 expression in the cytosol but did not alter iNOS expression. HMFC also attenuated the UVB-induced phosphorylation of p38, c-Jun N-terminal kinase (JNK) 1/2, and extracellular-signal-regulated kinase (ERK) 1/2, as well as the phosphorylation of c-Jun in the immortalized human skin keratinocyte HaCaT cells. Therefore, the application of centrifugation is suitable for producing high-solid MFC as a candidate material for anti-inflammatory and antioxidative marine cosmeceuticals.

Keywords

Acknowledgement

This research was supported by Korea Institute of Marine Science & Technology Promotion (KIMST) funded by the Ministry of Oceans and Fisheries, Korea (No. 20210386).

References

  1. Leandro A, Pereira L, Goncalves AMM. 2020. Diverse applications of marine macroalgae. Mar. Drugs 18: 1-17
  2. Jang JH, So BR, Yeo HJ, Kang HJ, Kim MJ, Lee JJ, et al. 2021. Preparation of cellulose microfibril (CMF) from Gelidium amansii and feasibility of CMF as a cosmetic ingredient. Carbohydr. Polym. 257: 117569.
  3. So BR, Yeo HJ, Lee JJ, Jung YH, Jung SK. 2021. Cellulose nanocrystal preparation from Gelidium amansii and analysis of its antiinflammatory effect on the skin in vitro and in vivo. Carbohydr. Polym. 254: 117315.
  4. Jang SS, Shirai Y, Uchida M, Wakisaka M. 2012. Production of mono sugar from acid hydrolysis of seaweed. Afr. J. Biotechnol. 11. DOI: 10.5897/AJB10.1681 .
  5. Kim N-J, Li H, Jung K, Chang HN, Lee PC. 2011. Ethanol production from marine algal hydrolysates using Escherichia coli KO11. Bioresour. Technol. 102: 7466-7469. https://doi.org/10.1016/j.biortech.2011.04.071
  6. Jung YH. 2017. Trends and prospects of microfibrillated cellulose in bio-industries. Microbiol. Biotechnol. Lett. 45: 1-11 https://doi.org/10.4014/mbl.1702.02001
  7. Li M, Du J, Han Y, Li J, Bao J, Zhang K. 2019. Non-starch polysaccharides in commercial beers on China market: Mannose polymers content and its correlation with beer physicochemical indices. J. Food Compos. Anal. 79: 122-127. https://doi.org/10.1016/j.jfca.2019.03.015
  8. Rathod M, Haldar S, Basha S. 2015. Nanocrystalline cellulose for removal of tetracycline hydrochloride from water via biosorption: equilibrium, kinetic and thermodynamic studies. Ecol. Eng. 84: 240-249. https://doi.org/10.1016/j.ecoleng.2015.09.031
  9. Yu S, Sun J, Shi Y, Wang Q, Wu J, Liu J. 2021. Nanocellulose from various biomass wastes: Its preparation and potential usages towards the high value-added products. Environ. Sci. Ecotechnol. 5: 100077.
  10. Chen YW, Lee HV, Juan JC, Phang S-M. 2016. Production of new cellulose nanomaterial from red algae marine biomass Gelidium elegans. Carbohydr. Polym. 151: 1210-1219. https://doi.org/10.1016/j.carbpol.2016.06.083
  11. Saini S, Kardam SK, Kadam AA, Kumar V, Gaikwad KK. 2022. Green and energy-efficient extraction of cellulose nano-fibrils from rice straw and its coating to improve functional properties of rice straw paperboard made via refiner mechanical pulping. Prog. Org. Coat. 165: 106747.
  12. Disconzi FP, Borghi FT. 2020. Modeling, simulation, and optimization of the centrifugal separation of a microalgae-culture medium mixture. Biomass Bioenergy 143: 105871.
  13. Calvo GF, Cortes-Llanos B, Belmonte-Beitia J, Salas G, Ayuso-Sacido A. 2020. Modelling the role of flux density and coating on nanoparticle internalization by tumor cells under centrifugation. Appl.Math. Model. 78: 98-116. https://doi.org/10.1016/j.apm.2019.10.005
  14. Gleiss M, Hammerich S, Kespe M, Nirschl H. 2017. Application of the dynamic flow sheet simulation concept to the solid-liquid separation: Separation of stabilized slurries in continuous centrifuges. Chem. Eng. Sci. 163: 167-178. https://doi.org/10.1016/j.ces.2017.01.046
  15. Jahan A, Ahmad IZ, Fatima N, Ansari VA, Akhtar J. 2017. Algal bioactive compounds in the cosmeceutical industry: A review. Phycologia 56: 410-422. https://doi.org/10.2216/15.58.1
  16. Chambers ES, Vukmanovic-Stejic M. 2020. Skin barrier immunity and ageing. Immunology 160: 116-125. https://doi.org/10.1111/imm.13152
  17. Eyerich S, Eyerich K, Traidl-Hoffmann C, Biedermann T. 2018. Cutaneous barriers and skin immunity: Differentiating a connected network. Trends Immunol. 39: 315-327. https://doi.org/10.1016/j.it.2018.02.004
  18. Tan L, Tang YQ, Nishimura H, Takei S, Morimura S, Kida K. 2013. Efficient production of bioethanol from corn stover by pretreatment with a combination of sulfuric acid and sodium hydroxide. Prep. Biochem. Biotechnol. 43: 682-695. https://doi.org/10.1080/10826068.2013.773338
  19. Boufi S, Chaker A. 2016. Easy production of cellulose nanofibrils from corn stalk by a conventional high speed blender. Ind. Crops Prod. 93: 39-47.
  20. Martinez D, Buckley K, Jivan S, Lindstrom A, Thiruvengadaswamy R, Olson J, et al. 2001. Presented at the the science of papermaking: transactions of the 12th fundamental research symposium, Oxford. The Pulp and Paper Fundamental Research Society, Bury, UK.
  21. Parajuli S, Urena-Benavides EE. 2022. Fundamental aspects of nanocellulose stabilized pickering emulsions and foams. Adv. Colloid Interface Sci. 299: 102530.
  22. Seta FT, An X, Liu L, Zhang H, Yang J, Zhang W, et al. 2020. Preparation and characterization of high yield cellulose nanocrystals (CNC) derived from ball mill pretreatment and maleic acid hydrolysis. Carbohydr. Polym. 234: 115942.
  23. Ferrer A, Salas C, Rojas OJ. 2016. Physical, thermal, chemical and rheological characterization of cellulosic microfibrils and microparticles produced from soybean hulls. Ind. Crops Prod. 84: 337-343. https://doi.org/10.1016/j.indcrop.2016.02.014
  24. Md Salim R, Asik J, Sarjadi MS. 2021. Chemical functional groups of extractives, cellulose and lignin extracted from native Leucaena leucocephala bark. Wood Sci. Technol. 55: 295-313. https://doi.org/10.1007/s00226-020-01258-2
  25. Bang WY, Adedeji OE, Kang HJ, Kang MD, Yang J, Lim YW, et al. 2021. Influence of cellulose nanocrystal addition on the production and characterization of bacterial nanocellulose. Int. J. Biol. Macromol. 193: 269-275. https://doi.org/10.1016/j.ijbiomac.2021.10.092
  26. Doris M, Aziz F, Alhummiany H, Bawazeer T, Alsenany N, Mahmoud A, et al. 2017. Determining the effect of centrifugal force on the desired growth and properties of PCPDTBT as p-type nanowires. Nanoscale Res. Lett. 12: 67.
  27. Floegel A, Kim D-O, Chung S-J, Koo SI, Chun OK. 2011. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J. Food Compos. Anal. 24: 1043-1048. https://doi.org/10.1016/j.jfca.2011.01.008
  28. Cinelli MA, Do HT, Miley GP, Silverman RB. 2020. Inducible nitric oxide synthase: Regulation, structure, and inhibition. Med. Res. Rev. 40: 158-189. https://doi.org/10.1002/med.21599
  29. Yamada M, Prow TW. 2020. Physical drug delivery enhancement for aged skin, UV damaged skin and skin cancer: translation and commercialization. Adv. Drug Deliv. Rev. 153: 2-17. https://doi.org/10.1016/j.addr.2020.04.008
  30. Buckman SY, Gresham A, Hale P, Hruza G, Anast J, Masferrer J, et al. 1998. COX-2 expression is induced by UVB exposure in human skin: implications for the development of skin cancer. Carcinogenesis 19: 723-729. https://doi.org/10.1093/carcin/19.5.723
  31. Cerella C, Sobolewski C, Dicato M, Diederich M. 2010. Targeting COX-2 expression by natural compounds: A promising alternative strategy to synthetic COX-2 inhibitors for cancer chemoprevention and therapy. Biochem. Pharmacol. 80: 1801-1815. https://doi.org/10.1016/j.bcp.2010.06.050
  32. Zenz R, Eferl R, Scheinecker C, Redlich K, Smolen J, Schonthaler HB, et al. 2008. Activator protein 1 (Fos/Jun) functions in inflammatory bone and skin disease. Arthritis Res. Ther. 10: 201.